
An Exploration of Geolocation and
Traffic Visualisation Using Network

Flows to Aid in Cyber Defence

Submitted in partial fulfilment

of the requirements of the degree of

Bachelor of Science (Honours)

of Rhodes University

Sean Niel Pennefather

Grahamstown, South Africa

November 1, 2013

Abstract

A network flow is a record that represents the characteristics associated with a unidirec-

tional stream of packets between two hosts using an IP layer protocol. As a network flow

only represents statistics relating to the data transferred in the stream, the effectiveness of

utilising network flows for traffic visualisation to aid in cyber defence is not immediately

apparent and needs further exploration. The goal of this research is to explore the use of

network flows for data visualisation and geolocation.

A prototype system capable of collecting network flows exported using the NetFlow version

9 protocol designed and was implemented as part of this research to aid in this exploration.

This system processes the collected flow records and renders the geolocated results on an

interactive map in a web browser.

Using conformance testing it is shown that the prototype system is capable of collecting

network flows and generating geolocated flow events in 50 milliseconds on the test plat-

form. The system also provides functionality for the generation of heatmaps and tools for

replaying flow events from the client browser for further visual analysis. A reporter tool

has also been developed to produce monthly reports on the collected network flows.

Acknowledgements

As the writer of this research paper, I would like to acknowledge the support received

during this research. I would first like to give thanks to my supervisor Professor Barry

Irwin as his guidance and support has been essential to the success of this research.

I am deeply indebted to my family for their continued love and support throughout the

course of this year, their care and aid has allowed me to focus on the completion of this

thesis.

I would also like to extend thanks to Mr John Richter for his guidance and support during

this research.

I would like to thank the NRF and Rhodes University for the financial support that

allowed me to complete this research. Finally I would like to acknowledge the financial

and technical support of Telkom, Tellabs, Stortech, Genband, Easttel, Bright Ideas 39

and THRIP through the Telkom Centre of Excellence in the Department of Computer

Science at Rhodes University.

This research makes use of GeoLite data created by MaxMind.

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Research Goals . 1

1.3 Research Scope . 3

1.4 Research Approach . 3

1.5 Document Structure . 4

2 Literature Review 5

2.1 Introduction . 5

2.2 What is a Flow . 6

2.3 NetFlow . 7

2.3.1 NetFlow Version 5 . 8

2.3.2 NetFlow Version 9 . 9

2.3.3 NetFlow Export timings . 14

2.4 IPFIX . 14

2.4.1 Transmission Protocols . 15

2.4.2 Extended Characteristics . 15

2.4.3 Security Requirements . 16

2.4.4 Packet Structure . 16

2.5 Network Flow Collectors . 17

2.5.1 Flowd . 17

2.5.2 Flow-tools . 17

2.5.3 nProbe . 18

2.6 Geolocation . 18

2.7 Visualisation . 19

2.8 Port Scanning . 20

2.9 Worms . 21

2.10 Denial of Service . 22

i

CONTENTS ii

2.11 Summary . 23

3 Design 24

3.1 Introduction . 24

3.2 System Goals . 25

3.2.1 Geolocation . 25

3.2.2 Visualisation . 26

3.3 System Constraints . 27

3.4 System Overview . 27

3.5 Hardware and Resource Considerations . 29

3.5.1 Record Storage . 29

3.5.2 Bandwidth Considerations . 29

3.5.3 Memory Considerations of the Client 30

3.6 Security Measures . 31

3.6.1 Exporter-Collector Security . 31

3.6.2 Collector-Server Security . 31

3.6.3 Client-Server Security . 32

3.6.4 Database Security . 32

3.7 Collector . 32

3.7.1 Collection Component . 33

3.7.2 Parser Component . 35

3.7.3 Transmission Component . 38

3.8 Server . 38

3.8.1 Processor Component . 38

3.8.2 Webserver Component . 40

3.9 Client . 42

3.9.1 Websocket Component . 43

3.9.2 Real-time Component . 44

3.9.3 Heatmap Component . 44

3.9.4 Replay Component . 44

3.10 Report Generator . 45

3.10.1 Report Structure . 45

3.10.2 Characteristic summary . 45

3.10.3 IP graph . 46

3.10.4 Pie Charts . 46

3.10.5 Line Graphs . 47

3.11 Summary . 47

CONTENTS iii

4 Implementation 48

4.1 Introduction . 48

4.2 Programming Language Section . 48

4.2.1 Compiled Languages . 49

4.2.2 Interpreted Languages . 49

4.2.3 Supporting Python as a Language 50

4.2.4 Supporting Javascript as a language 50

4.2.5 Pickle and Object serialisation . 50

4.2.6 Tornado Web Server . 51

4.2.7 ReportLab . 52

4.2.8 pyGeoIP . 52

4.2.9 Threading . 53

4.3 Collector Implementation . 53

4.3.1 Network Protocols . 54

4.3.2 Collector Thread . 54

4.3.3 Sender Thread . 55

4.4 NetFlow Packet Parsing . 55

4.4.1 Parser Thread . 56

4.4.2 Parse Thread . 56

4.5 Server Implementation . 56

4.5.1 Processor Component . 57

4.5.2 WebServer Component . 59

4.6 Web Client Implementation . 61

4.6.1 Interface Structure . 62

4.6.2 Initialisation . 62

4.6.3 WebSocket Communication . 62

4.6.4 Map Initialisation . 63

4.6.5 Live Communication . 64

4.6.6 Heatmap Generation . 65

4.6.7 Historical Replay . 66

4.7 Reporter Implementation . 67

4.7.1 Chart Colours . 67

4.7.2 Report Structure . 68

4.8 Summary . 71

5 System Evaluation 72

5.1 Introduction . 72

CONTENTS iv

5.2 Geolocation conformance testing . 72

5.2.1 Tools Used . 73

5.2.2 Method . 74

5.2.3 Results . 77

5.3 System Performance Testing . 81

5.3.1 Timing and Accuracy . 81

5.3.2 Bandwidth . 84

5.4 System Demonstration . 86

5.5 Summary . 88

6 Conclusion 90

6.1 Introduction . 90

6.2 Summary of Chapters . 90

6.3 Concluding results . 91

6.3.1 Prototype System . 92

6.3.2 Real-time Geolocation . 92

6.4 Research Review . 93

6.5 Closing Statement . 94

6.6 Future Work . 94

6.7 Development of a Suitable Flow Export System 95

A Exportable Characteristics 102

B Sample system report 105

C Sample Heatmaps 107

List of Figures

2.1 Standard NetFlow packet header . 7

2.2 NetFlow Version 5 packet header (Cisco, 2006) 8

2.3 NetFlow Version 5 packet record (Systems, 2004) 9

2.4 NetFlow version 9 Packet Format (Cisco, 2011a) 10

2.5 NetFlow version 9 Packet Header (Cisco, 2011a) 11

2.6 NetFlow version 9 FlowSet Template Format (Cisco, 2011a) 12

2.7 NetFlow version 9 Options Template Format (Cisco, 2011a) 13

2.8 IPFIX Packet Header Format (Trammell et al., 2009) 16

3.1 System Overview . 28

3.2 Collector Design . 33

3.3 Collection Component . 34

3.4 Parse Component . 36

3.5 Processing a Template Record . 36

3.6 Processing a Data Record . 37

3.7 Server Component . 39

3.8 Server Processor . 39

3.9 Client Component . 42

3.10 Websocket Component . 43

3.11 Reporter Overview . 45

4.1 Collector implementation . 53

4.2 Server implementation . 57

4.3 Overview of the event handling by the WebServer 59

4.4 Example of a generated interactive map . 64

4.5 Example of a generated list of statistics and IP chart 68

4.6 Example of generated pie charts . 69

4.7 Example of a generated line graph . 70

v

LIST OF FIGURES vi

5.1 Geolocation information returned by the GeoIP2 Precision Demo 76

5.2 Geolocation using Google Maps for coordinates from 5.1 78

5.3 Images rendered by system for geolocation 79

5.4 Physical[B] and Geolocated[A] location of IP 146.231.123.92. 80

5.5 Generated heatmap for flows seen . 87

5.6 Generated heatmap for data transferred 87

5.7 Flow event replay of download . 87

C.1 Heatmap of total bytes transferred . 107

C.2 Heatmap of flows recorded . 108

C.3 Heatmap of unique hosts connected to . 108

C.4 Heatmap of packets transferred . 108

List of Tables

2.1 Seven Characteristics of a Network Flow 6

2.2 Example NetFlow compatable routing devices (Cisco, 2012c) 7

2.3 Common characteristics exported . 13

3.1 Required record characteristics . 27

4.1 List of implemented request tags . 60

4.2 Possible heatmap characteristics . 65

5.1 Table of IP addresses used in conformance testing 75

5.2 Database Records Extracted . 80

5.3 Sample recorded results of time taken to process a network flow 82

5.4 Recorded results of time taken to parse received packets 82

5.5 Recorded results of time taken to serialise records 83

5.6 Times recorded for geolocation lookup and record storage 84

5.7 Recorded statistics of realtime traffic . 85

5.8 Recorded statistics of heatmap traffic . 85

5.9 Recorded statistics of replay traffic . 86

5.10 System processing time . 88

vii

Chapter 1

Introduction

1.1 Problem Statement

Network flow processing has the potential to allow for a large reduction in the volume

of data to be processed by monitoring systems when compared to traditional packet pro-

cessing counterparts. The reason for this reduction in volume is that a network flow is a

single record that represents the characteristics associated with an instance of communi-

cation between two hosts using an IP layer protocol (Morken, 2010). A flow record does

not record the actual data transferred and as a result, the record size is only dependent

on the number of characteristics the record must report on rather than the number of

packets transferred for the duration of the connection.

This allows network flows to be used to reduce the volume of data that must be processed.

This reduction comes at the cost of not recording the actual content of the packets that

make up the connection which are required by systems that employ packet analysis tech-

niques as part of processing (Proctor, 2001). Because of this reduction in resolution, the

effectiveness of utilising network flows for traffic visualisation to aid in cyber defence is

not immediately apparent and needs further exploration.

1.2 Research Goals

As companies expand, supporting networks must evolve to accommodate the resulting

traffic requirements. These requirements include support for increased traffic volume and

transmission speeds between internal and external networks. This increased volume still

1

1.2. RESEARCH GOALS 2

needs to be monitored for both the health of the internal network and its connection

to external parties. Though this can continue to be done using purely packet based

processing and logging, the amount of memory and processing required increases. The

increasing demand for more system resources result in companies needing to purchase

more hardware to maintain the current traffic monitoring system.

The aim of this research is not to discount the credibility of continuing to use packet

based processing for traffic visualisation and network security but rather to explore the

potential of using network flows to achieve a similar goal. The exploration will cover two

areas of research:

� An exploration into the use of network flows for traffic visualisation to aid in ad-

ministration and network security.

� The use of network flows for real-time geolocation and coordinate rendering.

Due to the nature of how network flows are constructed, the default behaviour of the

responsible hardware is to report on the flows only after the communication is complete

which is discussed in section 2.3.3. This can be overridden so that the reporting device

reports on active flows in set intervals rather than waiting for them to complete. As this

time can be set, the timing tests will not record the duration from the initialisation of a

flow to that flow being exported to the system.

Though geolocation and coordinate rendering falls under data visualisation, it is significant

enough to warrant mentioning as host addresses can be exported as a characteristic of a

flow. A geolocation database can then be used to convert a host address into geographic

coordinates.

In order to explore the feasibility of Network Flows in the above applications, it is nec-

essary to develop a system that is capable of performing both geolocation and other

techniques for visually representing stored network flow records. This system must be ca-

pable of reading in raw Network Flow packets as they are received from the exporter and

handling flow record aggregation as well as representing both the record characteristics

and geolocation results visually to the system user.

1.3. RESEARCH SCOPE 3

1.3 Research Scope

Defining the research scope is important to formally describe the problems that are in-

vestigated in this research. The investigation will use the IPv4 address space and not the

IPv6 address space. The results produced in this research with regards to flow geoloca-

tion and data visualisation wilzl be the same for both IPv4 and IPv4. However, to limit

complexity and due to the lack of quality IPv6 golocation databases, IPv6 will not be

supported.

The system implemented to perform this research is not capable of sending or receiving

NetFlow options templates or NetFlow options records. NetFlow options templates and

NetFlow options records form part of the NetFlow version 9 protocol and are discussed

further in chapter 2. The reason for this is that adding the additional functionality to the

system does not effect the research performed. NetFlow options records are used to send

information regarding the actual process used to generate the network flows which is not

required to achieve the goals described in section 1.2 (Cisco, 2011a).

The research will be host based rather than network based. Network based geolocation and

data visualisation require maintenance of multiple source IP addresses and the produced

results will need to be generated for each source address. Furthermore, flow exporting

system used in this research is Softflowd1 which is host based and exports flows only for

the source IP address on the platform on which it is running.

The results of data visualisation will focus on identifying the type of visualisation that can

be performed using network flows. As data visualisation is largely dependent on specific

requirements of the user, the results produced for this research are a proof of concept.

For determining the applicability of a realtime system utilising network flows, timing con-

cerns will focus on network flow generation and flow processing by an implemented system.

Timings regarding communication between the Server and Client will be considered out

of scope due to its reliance on the connecting network path.

1.4 Research Approach

The approach taken to achieve the goals outlined in section 1.2 is to design a prototype

system capable of flow geolocation and data visualisation. The designed system is then

1Softflowd is a software based flow export system (Miller, 2011)

1.5. DOCUMENT STRUCTURE 4

implemented and tested to insure suitable functionality.

1.5 Document Structure

� An in depth investigation of network flows is covered in chapter 2 which includes a

discussion regarding the protocols used to export raw flows from the flow exporting

system. Geolocation and data visualisation is discussed along with network treats

and common intrusion techniques. An investigation into network flow exporting

systems completes the chapter.

� A prototype system is proposed and designed in chapter 3. This chapter identi-

fies goals the proposed system must achieve and the design is partitioned into the

components necessary to achieve them.

� Chapter 4 focuses on the system implementation. This chapter notes techniques

used to implement the functionality described in chapter 3 as well as identify and

promote the selected language for implementation.

� Conformance tests are designed and carried out in chapter 5 to test if the imple-

mented system is capable of successfully performing flow geolocation. Synthesised

data is used to time the system components when completing necessary tasks. The

data is also in generating statics of the generated system traffic. The tests are

followed by an evaluation of other data visualisation aspects of the system.

� Findings of this research are concluded in chapter 6 and is followed by a discussion

of future research.

Chapter 2

Literature Review

2.1 Introduction

This chapter provides the necessary background information regarding industry leading

protocols for exporting raw flow data. These protocols are used by high level switching or

routing devices to export raw flow data to target systems within a closed network. The

term ‘network flow’ is discussed in terms of the definition provided by Cisco which is a

unidirectional sequence of packets that all have seven characteristics in common (Cisco,

2012c). These seven characteristics are listed in table 2.1 and are used to define the active

flow that a packet belongs to.

Three network flow protocols are discussed in this chapter. As protocols NetFlow version

5 (Cisco, 2006) and NetFlow version 9 (Claise & Systems, 2006) are both provided by

Cisco, they are compared first in section 2.2. The comparison is done to highlight the

differences between the two versions which includes the advantages and disadvantages

of using each. Following the Cisco protocols, literature relating to IP Flow Information

eXport (IPFIX) (Claise et al., 2013) is reviewed in section 2.4. The review of each protocol

includes a discussion about packet structure and implementation.

This chapter includes a discussion on port scanning in section 2.8 which highlights common

techniques used to scan the network ports of an addressable host. This followed by an

investigation into worms and denial of service (DoS) attacks. Different systems that

are capable of collecting network flows are investigated in section 2.5. The investigation

includes a brief overview of each system and how it is used to process collected flows.

Finally, a brief overview of geolocation is discussed in section 2.6 and is followed by a

5

2.2. WHAT IS A FLOW 6

Table 2.1: Seven Characteristics of a Network Flow

Source IP Address
Destination IP Address
Source Port
Destination Port
Protocol
ToS Byte
Interface

discussion of data visualisation. This chapter concludes in section 2.11 with a summary

of the material covered.

2.2 What is a Flow

The concept of a Network Flow was patented by Kerr and Bruins on 28 May 1996. The

concept was created as an efficient means to report on network status and traffic patterns

as seen by routing devices for a related sequence of packets. Initially, a flow was defined as

a set of packets all destined for the same destination IP address and all originating from

the same source address. Further identification of a unique flow included the requirement

that all packets have the same destination port. (Kerr & Bruins, 1996)

According to Cisco (Cisco, 2012c), a flow is defined as a unidirectional sequence of packets

between two end hosts over a network. Each packet in the sequence must display the same

7 characteristics shown in figure 2.1 to be considered part of a single network flow. The

direction of the flow is determined by the host that began the communication.

This flow data which is generated by routing or switching devices such as those made by

Cisco (Cisco, 2012a) and Juniper (Juniper Networks, 2013). The generated data can then

be transferred to other devices for analysis to help identify potential network faults and

monitor resource use, typically for billing purposes. This data can further be analysed

to only display information pertaining to a particular network mask, a particular date or

time, and overall resource use.

The construction of the raw flow data is traditionally done at hardware level in compatible

routing or switching devices. Examples of compatible routers include those shown in table

2.2 which are supplied by Cisco and JunOS routers supplied by Juniper (Scheck & CSIRT,

2009). As it is already necessary for such devices to analyse received packets for routing

2.3. NETFLOW 7

Table 2.2: Example NetFlow compatable routing devices (Cisco, 2012c)

Platform Name NetFlow Export Version(s)
Cisco 12000 v5 v8 v9
Cisco 800 v9
Catalyst 65k/7600 v5 v8 v7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Count

System Uptime

UNIX Seconds

Figure 2.1: Standard NetFlow packet header

purposes, a hardware level approach allows the device to generate the flows using the

unpacked packets. Characteristics recorded include the basic components shown in table

2.1 as well as any additional information that the router is configured to collect such as

packet length and count.

In order to then transfer the recorded data collected on observed flows to another device

for processing, a raw flow exporting protocol is employed. The exporting can occur when

the generating system concludes that a flow has expired or in set intervals regardless.

Currently, the significant raw flow export protocols are those developed by Cisco called

NetFlow version 5 and NetFlow version 9 (Cisco, 2011a). Additionally, a new protocol

is currently under development by the Internet Engineering Task Force (IETF) called

IPFIX (Claise et al., 2013). Though still in development, implementations of the protocol

are currently in use by network components such as the Barracuda NG Firewall1.

2.3 NetFlow

All versions of the NetFlow protocol currently available use the same packet header format

for representing version, count and timings. This helps developers to produce collector

software capable of handling different NetFlow protocols. Figure 2.1 shows the format of

the first 96 bits of a packet header. The count field indicates the number of flows that

are contained within the packet with the exception of NetFlow version 9 where this field

indicates the number of flow sets contained (Cisco, 2011a). The concept of a flow set is

1Only versions 5.2.3 and above are IPFIX compatible (Barracuda, 2013)

2.3. NETFLOW 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Count

System Uptime

UNIX Seconds

UNIX Nanoseconds

Flow Sequence

Type ID Sampling Interval (24 bits)

Figure 2.2: NetFlow Version 5 packet header (Cisco, 2006)

explained in more detail in section 2.3.2.

2.3.1 NetFlow Version 5

NetFlow version 5 is currently the most widely used protocol that is developed by Cisco

for exporting raw flows from routing devices to the collector (Lee et al., 2010).

Figure 2.2 shows the full NetFlow version 5 packet header which consists of 9 fields and is

24 bytes long. The first 12 bytes of the header that are common to all NetFlow protocols

versions and shown above in figure 2.1. This is followed by the residual nanoseconds since

the first day UNIX which is defined in RFC 5905 to begin on 1 January 1970 (Mills et al.,

2010). The flow sequence number is a running count of the number of flows seen by the

export device. The Type and ID fields in figure 2.1 are used to associate the packets

exported with a specific export device on the network. The final 3 bytes in the sequence

are reserved for the sampling interval where the first 2 bits determine the sampling mode

and the remaining 14 bits hold the value.

The Input and Output fields in figure 2.3 are the Simple Network Management Protocol

(SNMP) index numbers. The SNMP protocol is responsible for communicating manage-

ment variables between the managing devices and host as defined in RFC 1157 (Case

et al., 1990).Both the First and Last fields in figure 2.3 hold a time value in milliseconds

since the recording device was booted. The values are timestamps of the first and last

packets routed in the flow.

Next are the fields Source As and Destination As are Autonomous System Numbers (ASN)

which are used to identify the Autonomous System that each end host resides in. The

Autonomous System (AS) is described in RFC 4271 (Rekhter et al., 2006) as a collection

of routers that use an Interior Gateway Protocol along with set metric rules to determine

how to route packets. Though the routers may internally use a variety of metrics to

2.3. NETFLOW 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Address

Destination Address

Next Hop

Input Output

Packets Recorded

Octets

First

Last

Source Port Destination Port

Pad TCP Proto ToS Source As

Destination As S Msk D Msk Pad

Figure 2.3: NetFlow Version 5 packet record (Systems, 2004)

determine the routing paths between different internal components, the AS is seen to use

a single routing algorithm externally.

Two disadvantages of using NetFlow version 5 over its successor variants are that it does

not support IPv6 and the structure of exported packets is static (Systems, 2004). IPv6

has become increasingly prevalent as services such those provided by Google are now

accessible using IPv6 addressing2. Flow records exported under the NetFlow version 5

protocol are limited to only exporting data in the defined fields of the record and cannot

change during system runtime. Both of these issues are addressed in NetFlow version 9.

2.3.2 NetFlow Version 9

NetFlow version 9 is a raw flow export protocol that dynamically structures the contents

of the exported flow data records according to a previously exported template (Cisco,

2011a). This allows collecting systems to process NetFlow version 9 data packets without

knowing the format of the contained records prior to template lookup. The benefit of using

this protocol is that it allows the characteristics exported to be changed without restarting

either the exporter or collector systems. A result of this is that current NetFlow collectors

and parser algorithms will not have to be recompiled to use a new packet structure when

when it becomes necessary to export a new characteristic from the export device. Another

benefit of using a template based system is that companies can configure export devices

2statistics available available at http://www.google.com/intl/en/ipv6/statistics.html

2.3. NETFLOW 10

Packet Header

Payload

Template

Record
Data Record

Template

Record
Data Record

Figure 2.4: NetFlow version 9 Packet Format (Cisco, 2011a)

to export flow records in a format that is optimal to their needs as well as modify them

at a later stage without implementing a new protocol.

Figure 2.4 shows a packet exported under the NetFlow version 9 protocol. Th packet

begins with a packet header which is followed by a payload. The payload can be made up

of any combination of template and data records provided it contains at least one record.

According to Cisco feature guides, NetFlow version 9 is independent of the implemented

transport protocol being used to export the packets. Protocols used include UDP, TCP

and SCTP as described in NetFlow configuration guide on exporting via SCTP (Cisco,

2012b).

Currently, NetFlow version 9 exports two types of records which are flow records and

options records (Cisco, 2011a). Flow records contain information regarding the generated

flows and make up for the majority of the records contained in the packet payload. Option

records are used by the export device to export additional information regarding the raw

flows or the current configuration of the device. This can include the sampling frequency

and the algorithm used to generate the flows as well as the number of flows observed.

Both record types consist of template and data records. The format of the data records

is determined by a template which is used to pack traffic characteristics into the record.

As a result, template records must be received by the system before any dependant data

records can be processed. This also implies that the collector needs to maintain a buffer

2.3. NETFLOW 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Count

System Uptime

UNIX Seconds

Package Sequence

Source ID

Figure 2.5: NetFlow version 9 Packet Header (Cisco, 2011a)

of received templates which can then be used to parse the corresponding data records.

This adds increased complexity when it comes to flow collection as this additional buffer

is unnecessary for other protocols.

Packet Header

Figure 2.5 depicts a NetFlow version 9 header which and contains initial data regarding

the packet type and the originator. The interpretation of the count field in NetFlow

version 9 differers from previous versions of NetFlow. In NetFlow version 9, the count

field indicates the total number of records that form the body of the packet rather than

the number of flows. This is used to assist the collector in parsing the packet content.

(Cisco, 2011a)

The Source ID in figure 2.5 is used to uniquely identify each flow packet that is exported

from a specific export device3. This allows collector software to combine the source

IP address with this ID to uniquely distinguish every NetFlow record currently being

exported on the network. Following the header of the packet, the remaining packet

components are optional provided that at the packet contains at least one data or template

record. (Cisco, 2011a)

Data Template Record

The template record is dynamic in size which allows for the number of characteristics

exported using it to differ between templates. An example of this shown in figure 2.6

where the first 64 bits of a template record are compulsory. In order to be dynamic, the

Length field contains the total length of that packet in bytes. It is important to note that

this length refers to the entire template and so includes the length of the ID and Length

3The format of this value is vendor specific

2.3. NETFLOW 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FlowSet ID Length

Template ID Filed Count

Field 1 Type Field 1 Length

Field 2 Type Field 2 Length

::

Field N Type Field N Length

Figure 2.6: NetFlow version 9 FlowSet Template Format (Cisco, 2011a)

field. This value can then be used by the collector to determine the end of the current

template and the beginning of the next record. The FlowSet ID must contain a value

greater than 255. Values between 1 and 255 indicate an options template and the value

0 is reserved. (Cisco, 2011a)

After exporting a template, the exporting device can then export the data FlowSets

formatted according to the template exported. In order for the collector to identify the

template used to format the received data, the data set must advertise the ID of the

template used for formatting. This ID is the value held in the FlowSet ID field.

The body of the template is made for a series of field types followed by the corresponding

field length. The field type is a value that corresponds to a table of defined characteristics

that NetFlow version 9 is currently capable of exporting. There are 128 possible values

that the field type can be assigned to, each of which represents a flow characteristic cur-

rently supported by the protocol. A full listing of the possible characteristics is provided

in appendix A as only a few characteristics will be highlighted here. (Cisco, 2011a)

Though most values correlate to a predetermined characteristic of the traffic seen, there

are a few notable exceptions. The values 43, 51, 65 69, and 87 are associated with a

flow characteristic unique to the vendor of the export device and so are not defined in

the protocol. Values in the range 105 to 127 are currently reserved by Cisco for future

expansion of recorded characteristics. The value has been 100 depreciated by Cisco (Cisco,

2011a). Table 2.3 lists some the more common characteristics exported in a data record.

These characteristics make up for six of the seven requirements of a network flow tabulated

in table 2.1.

Other fields of particular interest include the value 1, which details the total number of

bytes transferred in the flow, and 2 which details the total number of packets transferred

in the flow. These two fields can then be used to give the flow analyser an idea of the

2.3. NETFLOW 13

Table 2.3: Common characteristics exported

Values Characteristic
4 IP layer protocol used
5 Incoming Type of Service (ToS)
7 Source port
8 Source IP address (IPv4)
11 Destination port
12 Destination IP address (IPv4)
21 Time when first packet was switched
22 Time when last packet was switched
55 Outgoing Type of Service (ToS)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FlowSet ID Length

Template ID Option Scope Length

Option Length Scope 1 Type

Scope 1 Length Scope 2 Type

::

Scope N Type Scope N Length

Option 1 Type Option 1 Length

::

Option N Type Option N Length

Padding

Figure 2.7: NetFlow version 9 Options Template Format (Cisco, 2011a)

average packet size and the amount of data transferred in that particular flow. The values

21 and 22 refer to the system uptime when the first and last packet was processed. These

values can be used to determine the duration of a network flow. By using the volume

transferred and the duration, the processing system can determine the average bandwidth

of the network flow.

Options Template Record

As in the case of the data template, the options template provides the format used in

exporting information regarding the current configuration of the routing device as well as

other meta data.

2.4. IPFIX 14

The possible fields that the options data record can be formatted to export are vary

similar to a flow data record. The difference between the two records is that the options

data is focused on meta data regarding the current configuration of the device and the

protocol. In order for the options template to specify what component of the system the

fields exported relate to, each field falls into a scope which is also specified in the template.

The scope as shown in figure 2.7 precedes the options type and length fields.

2.3.3 NetFlow Export timings

When a packet is routed or switched by a system generating network flows, packet char-

acteristics are logged. The system uses the seven characteristics described in table 2.1 to

determine the flow the packet is associated with. If no flow exists and the flow cache is

not full, this packet begins a new flow. Once created, the flow exists until it is terminated

by the system. To determine whether a flow is to be terminated, NetFlow employs three

rules which are used to terminate flows. The first rule applies to TCP connections and

requires that a last packet processed for a flow is a FIN packet4. The second rule is that

a no traffic for a particular flow has been seen for a configurable amount of time, this is

the primary method of termination UDP flows. The third rule is implemented to prevent

stagnant flows from developing and simply enforces that a flow be terminated after a

configurable amount of time, regardless to activity. (Estan et al., 2004)

An alternative is to configure the exporting system so that it periodically reports on

network flows regardless of whether they have been terminated or not. This periodic

reporting allows the reliant system to define a maximum latency between then a flow

begins and when it is reported. This approach does result in a similar latency being

defined for knowing when a UDP flow has terminated5. This arises from the dependant

system needing to wait for the next periodic announce from the export system to detect

if the UDP flow is not reported.(Cisco, 2011b)

2.4 IPFIX

IPFIX is an attempt to create a standardised protocol for the export of raw flow records

from an export device to a collecting device. IPFIX is based on NetFlow version 9 with

4A TCP packet with the FIN flag set to high.
5For TCP flows, the flag characteristic can be monitored for a FIN flag.

2.4. IPFIX 15

formal specifications being outlined in Request for Comments (RFC) 3917 (Zseby et al.,

2004). IPFIX is well developed in terms of its specification and possible applications in

industry.

The IPFIX protocol employs a dynamic packet structure consisting of data and template

records. Though similar to NetFlow version 9, IPFIX extends the number of characteris-

tics that can be exported from 128 to 239 (Quittek et al., 2008). As with NetFlow version

9, the collector requires that the template is received before any data formatted according

to that template is received.

2.4.1 Transmission Protocols

IPFIX is designed to be independent of the underlying transport protocol used which

means it can be transmitted using IP layer protocols such as TCP, UDP, and SCTP.

Though all three protocols are a viable choice for transmission, should the transmission

path be susceptible to congestion, it is suggested in RFC 5101 (Claise, 2008) that SCTP

be used rather than the other two protocols due to the protocol’s congestion avoidance

capabilities.

2.4.2 Extended Characteristics

The extension to the number of exportable characteristics allows for more detailed infor-

mation on flows to be exported. Additional characteristics include IP and TCP header

lengths and the reasons for flow termination. Other interesting additions include an indi-

cator of whether the packets being routed are part of a multicast address and total counts

for TCP flags such as SYN or ACK.

The IPFIX protocol also allows for the export of statistical data about the volume of data

processed such as the total number of flow records that have been observed by the export

device since it was last booted. Another useful characteristic of the exporter that can

be exported using this protocol is the total number of flows that were observed by the

router but for some reason, were not exported to the collector. These reasons can include

configurations on the exporter to not export flows that exhibit particular characteristics

or simply that there was insufficient space to store the record prior to exporting.

2.4. IPFIX 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Count

Export Time

Sequence Number

Observation Domain ID

Figure 2.8: IPFIX Packet Header Format (Trammell et al., 2009)

2.4.3 Security Requirements

The IPFIX protocol also has security requirements as mentioned in RFC 3917 (Zseby

et al., 2004) to help maintain data confidentiality and integrity which is expanded upon

in RFC 5101 (Claise, 2008). There are three broad requirements that the protocol must

achieve according to the security specifications. The first requirement is that a mecha-

nism must be provided to maintain the confidentiality of the raw exported flows as they

are transported from the exporter to the collector so that sensitive information cannot

be be disclosed by intercepting IPFIX packets. Secondly, the integrity of the data must

be maintained during the transfer so that information received by the collector can be

considered reliable. Lastly, the protocol must include authentication of both exporters

and collectors to prevent unauthorised exporters from exporting rogue flows and unau-

thenticated collectors from receiving legitimate flows as this would break the first security

requirement.

2.4.4 Packet Structure

The format of a IPFIX packet is the same as a NetFlow version 9 packet as shown in

figure 2.4. The same requirements apply that any combination of headers and template

set are allowed in the packet provided the condition that there is at least one header or

dater set in the payload is met.

The header of an IPFIX packet differs from the NetFlow version 9 header in figure 2.5

as the System Uptime field has been replaced with the export time of the packet. This

export time is the time in seconds since the Coordinated Universal Time (UTC) 6 and is

stamped as the packet leaves the exporting device.

The Observation Domain ID field indicates the observation domain 7 that the flow data

6A formal discussion of the UTC can be found in RFC 3339 (Klyne & Newman, 2002)
7An observation domain is further discussed in RFC 5101 (Claise, 2008)

2.5. NETWORK FLOW COLLECTORS 17

is exported from. An observation domain consists of one or more observation points

which are interfaces that flow recording takes place on. The constructed flows for each

observation point can then be aggregated by a metering process for that observation

domain. Characteristics of these flows and metering results are then exported from one

exporter per domain to the collectors. Observation Domains allow for a single collector to

easily identify the segment of a large network the flows being received are being exported

from.

2.5 Network Flow Collectors

To collect and process network flows exported by compatible routing or switching devices,

it is necessary to have an application that is capable of receiving packets exported under

a network flow export protocol. This application should then parse the packets to extract

the exported network flows. Three different collector applications are discussed in this

section.

2.5.1 Flowd

Flowd is an open source NetFlow traffic collector developed by Miller8 . The application

is currently on release 0.9.1 which was made publicly available on 25th July 2008. flowd-

0.9.1 is capable of collecting traffic transmitted under the NetFlow protocol. The versions

of the NetFlow protocol supported are; 1, 5, 7, and 9. Flowd is also capable of interpreting

both IPv4 and IPv6 addresses. It is also important to point out that Flowd is not an

analyser but simply a collector that accepts the above mentioned export formats and

writes them to disk in a binary stream format to minimise space usage. In order to read

this data for later processing, flowd has support for both Python and Perl calls allowing

applications developed in either language to access the stored data directly. (Miller, 2010)

2.5.2 Flow-tools

Unlike Flowd, flow-tools9 is a complete system for collecting and storing exported NetFlow

packets. This software can also be used to process and analyse the stored records. Flow-

8http://www.mindrot.org/projects/flowd/
9Version 0.68 is available for download from ftp://ftp.eng.oar.net/pub/flow-tools/flow-tools-0.68.tar.gz

2.6. GEOLOCATION 18

tools is capable of generating reports on the current state of the network as well as filtering

collected flows (Fullmer, n.d.b).

flow-tools works as a chain of smaller applications where the results of one application

become the input to a higher layer application. This means that links in the application

chain can be removed or substituted with other applications to generate desired output.

The advantage of an application chain is that the entire process can be distributed across

multiple systems in a large network and the process can easily be modified by swapping

out links.

The flow-tools complete application chain consists of 17 applications developed by Fullmer

with the exception of the flow-merge application which is developed by Lidz (Fullmer,

n.d.b). A full explanation of each of the applications will not be covered here but an

inspection of the capturing application called flow-capture is warranted.

Flow-capture is the first application in the application chain to receive information. This

application handles the NetFlow packets as they are exported to the capturing host and

can be configured in a number of ways (Fullmer, n.d.a). One configuration of the flow-

capture application will limit it to only accept flows from a specific remote IP, otherwise

any incoming flow packets will we collected and written to disk.

2.5.3 nProbe

nProbe10 is an application that can be used in conjunction with nTop for traffic analysis of

exported flows (nTop, 2013). As with other mentioned applications, the primary function

of nProbe is to act as a collector but is also capable of acting as an exporter to export

packets in NetFlow versions 5 and 9 or IPFIX (nTop, 2010). nProbe can run on Linux, OS

X and Windows and can export the collected raw flows into MySQL or SQLite databases

as well as plain text or binary for analysis. nProbe is also capable of collecting both IPv4

and IPv6 packets and is designed to run with minimal memory use.

2.6 Geolocation

Geolocation is the process of associating a physical region with an IP address or subnet.

Though primarily used for geomarketing advertising agencies in offering location specific

10The source code can be downloaded from: https://github.com/xrl/nprobe

2.7. VISUALISATION 19

advertisements to potential buyers (Cliquet, 2006), geolocation can also be used to select

the optimal route for region specific clients trying to access a distributed service.

Geolocation can also be used to determine what page a server should return to a client

request. This includes country specific web pages which can include data more locally

relevant such as language and currency formats. Geolocation can also be used to prioritise

results returned from search engines as well as for enforcing location based restrictions

on accessible material as mentioned by MacVittie (MacVittie, 2012) when discussing

scenarios of geolocation.

The process of geolocation is usually done by looking up an IP address in a geolocation

database and finding the smallest subnet that the IP address is contained in. This can

be done online by utilising an online geolocation database such as those offered by the

Internet Authorities (NCC, 2011), or offline by by using a local geolocation database such

as those provided by MaxMind (MaxMind, n.d.).

An example of an implementation of geolocation is HoneyMap. HoneyMap is an interac-

tive map for the visualization of network attacks in real time. The attacks are recorded

by honeypots distributed globally that record the IP address of attackers. These IP ad-

dresses are then geolocated and the resulting coordinates are used to plot the location of

the attack on a world map (Watson et al., 2013).

2.7 Visualisation

An important feature a data analysis system is data visualisation. Network flows will

produce considerably less data when compared to other packet sampling based approaches

but still handle large volumes of information. This data need to be aggregated so that a

user can quickly assess the current situation of the network. To this end, it is important

for visual rendering of selective data to be a part of a data analysis application.

In terms of geolocation, visualisation could mean representing geolocated information on

a map which is then displayed to the user such as the Honeynet Project (Project, n.d.).

This way, a user can quickly see the location of flow endpoints and draw conclusions that

would prove difficult for an analyser to perform. Examplles of this include suspicious

clustering of addresses in a region known to have been compromised.

Another use of visualisation is to be able to represent flow characteristics over a selected

range in terms of each other. Examples can include three dimensional plots such as

2.8. PORT SCANNING 20

InetVis, a visualisation tool for telescope traffic analysis by Van Riel (van Riel & Irwin,

2006), and two dimensional charts and graphs which can be grouped to visually describe

a situation.

2.8 Port Scanning

A third technique is Port Scanning which can be used to detect open ports on a host. As

discussed by Yang (Yang, 1997), scanning a port is simply the process of sending traffic

to a particular port on a potential victim and detecting if there is a reply from the victim

which would indicate that its accepting traffic on the target port and thus is open. Both

TCP and UDP protocols can be used to perform a port scan with each protocol being

used to target specific connections.

One way to perform a port scan is to attempt to create a legitimate TCP connection

with the target host on a specific port and wait for a response. If the connection can

be established, the target port is open the connection can be closed by performing a

legitimately. This method does not need any custom packet crafting but is easy to detect

as the port will log successful connection attempts.

An alternative to this is to perform a SYN scan. A SYN scan requires the construction

of the initial packet in the TCP handshake which is then sent to a port on the target

host. If the host replies with a SYN ACK packet, then the port is open and unfiltered.

In this case, a RST11 packet should be sent to cancel the connection establishment. The

connection must be reset as the target host has allocated the required memory to handle

a potential TCP connection. By not sending a RST packet and leaving the connection

to time out, the scan becomes more visible due to the larger memory footprint. Should a

range of ports on the same host be scanned before these connections time out, the port

scan can become a Denial of Service (DoS) attack (Erickson, 2008).

The UDP protocol can also be used to perform a port scan. Due to its simplicity, perform-

ing a successful port scan with this protocol is more difficult. One of the main reasons for

this is because UDP attempts a best effort approach at transferring data and so there is

always a chance that the probe or reply packet never reaches its destination. To account

for this, UDP port scans often have to do repeat tests to try reduce the probability of

a false response. Another concern with using UDP port scanning is that many modern

11A TCP packet with the reset flag set (Braden & IETF, 1989)

2.9. WORMS 21

firewalls simply block UDP probes from reaching a closed port which will mean that no

reply is generated. This lack of reply could indicate a false positive to the scanner.

The process of a UDP port scan is performed by sending a UDP packet or probe to the

target host on a specific port. If the port is closed, the scanner will receive an ICMP12

port unreachable message from the victim (Messer, 2007). If no reply is received then the

port can be considered either filtered by a firewall or open.

In order to try reduce ambiguity between whether the port is open or filtered, the scanner

can attempt to send crafted UDP packets to the target ports that are designed to trigger a

response from the application that the port is currently bound to. If the scanner receives

no reply, the port can be considered filtered while a reply can indicate open or closed

depending on the response. This process requires that the scanner must know what

application is running on the target port or test a possible range of applications.

2.9 Worms

Another threat to end hosts connected to a network is the infection of self propagating

malware code. An example of such code is a worm which exploits a vulnerability in the

victim to allow the malware to be executed and deliver the attached payload. The infected

machine then seeds the worm by scanning other end hosts for a exploitable vulnerability

and uploading the malware to those hosts (Zou et al., 2006).

The scanning process utilised by worms varies greatly but five common techniques used

are; random scanning, local preferential scanning, target selection, hitlist scanning, and

tological scanning.

Random scanning is when the infected host performs port scans on randomly generated

IP ranges for potential victims. These random IP ranges are usually created by first

generating a 32 bit random number which then acts as the address (Gldi & Hiestand,

2005). This technique allows the worm to spread quickly over a wide range of vulnerable

hosts but is very visible as the volume of requests can put noticeable strain on routing

devices.

An improvement on pure random scanning is local preferential scanning. In local pref-

erential scanning, IP addresses are still generated randomly except now the most sig-

nificant octets are fixed so that the infected host first scans random IPs within local

12Internet Control Message Protocol (Braden & IETF, 1989)

2.10. DENIAL OF SERVICE 22

subnet (mhaske Dhamdhere & Patil, 2012). This method comes with the benefits of more

thoroughly scanning local hosts which are more likely to exhibit the same vulnerability.

Other advantages include reduced traffic across larger networks which means a reduced

likelihood of detection.

Some scanning techniques are not random at all such as hitlist scanning where the infected

host will scan a predetermined set of IP addresses. With hitlist scanning, the target IP

addresses are hard coded by the attacker prior to the initial infection. This accelerates

the initial infection rate of the worm (Staniford et al., 2002). As a result of using a hitlist,

the worm will only target hosts explicitly specified by the attacker. A disadvantage of

hitlist scanning is that the worm will not be able to scan for hosts in the local network

which are more likely to exhibit the same vulnerability. Tological scanning accounts for

this by collecting data on computers that exist in the local area network of the infected

host (mhaske Dhamdhere & Patil, 2012). This scanning technique then targets hosts in

this constructed list first as they are more likely to be vulnerable to the same exploit as

the infected host.

NetFlow based approach to intrusion detection has been done by Dhamdhere(mhaske

Dhamdhere & Patil, 2012). Dhamdhere describes two systems that make use of NetFlow

data and could be used for worm detection. The first system take the approach of parsing

data segments for malicious activity, blocking future harmful traffic and then notifying

the network administrator. Unfortunately, this system was found to generate many false

positives and so a new system called FloWorm was designed. FloWorm quickly identifies

and tracks abnormal flow activity. Abnormal traffic is then monitored to detect similarities

between it and traffic seen during a worm intrusion. If the traffic does show characteristics

seen during a worm intrusion, the flow is tagged and the network Administrator is notified.

(mhaske Dhamdhere & Patil, 2012)

2.10 Denial of Service

Denial of service (DoS) or distributed denial of service (DDoS) is another common network

threat to any end host the relies on a network connection to provide a service. This threat

works by flooding the server providing the service with fake traffic. The increase traffic

pushes the server to maximum capacity. When legitimate traffic arrives from a potential

client trying to access a provided service, the server is unable to service the request

(Mirkovic & Reiher, 2004).

2.11. SUMMARY 23

Other versions of this attack include upstream DoS attacks where the target of the attacker

are the routers or ISP that route the victims traffic (Mirkovic & Reiher, 2004). These

routers become congested with dummy traffic and so legitimate traffic cannot be routed

to the victim server successfully.

NVisionIP is a Java based system developed to assist in the identification a DDoS attack

on a network. NvisionIP uses data flows collected by NetFlow for statistical analysis of

the current traffic being routed or switched by an exporting system. NvisionIP collects

network data from the flows received via the NetFlow protocol and after processing,

represents the statical results to the user for external analysis. (Lakkaraju et al., 2004)

2.11 Summary

A network flow as defined by Cisco has become a popular format for collecting character-

istics about network traffic as it is supported by compliant routing and switching devices.

Different protocols exist for exporting theses flows from the export device and these pro-

tocols themselves are well defined and quickly gaining popularity. This is especially true

of the template based mechanic of NetFlow version 9 what has been incorporated into

the IPFIX protocol format.

Two network based attacks that threaten end hosts were discussed and Potential NetFlow

based systems that assist in the detection of such attacks are also briefly discussed. From

the review, it is clear that there is no simple solution to completely secure a system

without significantly compromising the accessibility of the host to legitimate traffic.

Visualisation is an important feature of any application that attempts to represent large

volumes of data to a user in a way that is easy to read and quick to interpret. An example

of this is representing geolocated data on a map which is displayed to the user so as to

quickly identify the physical location of a destination host. Another approach is to use

3D visualisation techniques like those proposed by Van Riel (van Riel & Irwin, 2006).

Chapter 3

Design

3.1 Introduction

To achieve the goals described in the previous chapter, it is necessary to develop a system

that is capable to performing geolocation and network visualisation. This system must

collect the raw network flows as as they are exported from the responsible system and

process them.

This chapter begins by first detailing the goals that this system should be designed to

meet in section 3.2. This section also identifies and justifies the network flow export

protocol to be used by the system. The system constraints are identified and discussed

in section 3.3. These constants do not include the limitations imposed by the research

scope in section 1.3. A system overview in given in section 3.7. This overview shows the

system composition as well as identifies the components needed for the system to function

correctly. Hardware and resource considerations are covered in section 3.5 which includes

concerns regarding memory requirements of the web based system component. Security

measures are mentioned in section 3.6.

The remainder of the chapter is devoted to detailed designs of each of the required system

components. These designs discuss how the components should be implemented to achieve

the system goals. This chapter concludes with a summary of the material covered in

section 3.11.

24

3.2. SYSTEM GOALS 25

3.2 System Goals

The system has two defined goals which it should be able to produce as an end result.

These goals are geolocation of the external endpoints of each flow and the generation of

visual aids to assist in network visualisation. In order to achieve this, system components

for geolocation, report generation, and visually representing recorded characteristics are

needed.

3.2.1 Geolocation

To achieve the geolocation goal, two system components are required which are; a geolo-

cation database that can translate IP addresses into latitude and longitude coordinates,

and a map that can be viewed and interacted with.

Geolocation database

As discussed in in section 2.6, the geolocation database can simply be a binary file such

as those available from MaxMind (MaxMind, n.d.) which will return geolocation details

for a given IPv4 address. The resolution of the returned coordinates varies depending

on the type of binary file used. For this research, the binary files used are those made

available for free by MaxMind. These files do not have the resolution of binary files which

are made available after purchasing the appropriate site licence from MaxMind.

Rendering Platform

In order to make and render the interactive map, a component of the system should

be designed as a web based application and present the interactive maps to the user

using a browser compatible language such as JavaScript. A web based application has

been chosen to make the results produced by the system more easily accessible to hosts

situated in different physical networks. The possibility of having multiple instances of this

component active simultaneously should also be catered for. The rendered map should

not be static and must display the current geolocation results without the user being

required to request them. To support this, the map rendered in the web application must

update itself automatically with new flow endpoints as they are received by the system.

3.2. SYSTEM GOALS 26

3.2.2 Visualisation

The second goal of the system is to produce visual aids that assist in visualising the

recorded information. To achieve this, the system includes three visual components which

can be used by the user. Two of these components require a map similar to the one being

used for geolocation and so are included as part of the web based application. These two

components are; a heatmap for associating a volume or frequency of a flow characteristic

with all countries for a specified time range, and a replay component that can be used to

replay traffic as it was collected by the system.

The third visual component is a report that can be generated and uses visual aids to

represent the network for a given month.

Protocol Selection

In order to achieve either of the above goals, it is also necessary to enable the system to

collect the raw flows as they are exported from the exporting system. After reviewing the

available flow export protocols investigated in chapter 2, the protocol that this system

will accept and be able to interpret is NetFlow version 9.

There are three reasons for selecting this protocol. The first reason is that NetFlow version

9 is currently the most recent protocol developed by Cisco and so is more likely to be

compatible with modern export devices.

The second reason for this selection is to take advantage of the dynamic packet structure

of this protocol. With this protocol, it is possible to select what flow characteristics

the export device should export for each record. This is advantageous as this means

that unnecessary characteristics are not exported as they are in previous versions of the

NetFlow protocol and the characteristics exported can be specified to meet the system’s

needs.

Lastly, due the similarities between the NetFlow version 9 protocol and the IPFIX pro-

tocol, modifying the defined system to also accept packets being transmitted under the

IPFIX protocol can be done with less complications than would be the case if a previous

version of the NetFlow protocol was selected.

3.3. SYSTEM CONSTRAINTS 27

Table 3.1: Required record characteristics

Source IP Address (IPv4)
Destination IP Address (IPv4)
Source Port
Destination Port
Protocol of flow
Time of first packet switched
Time of last packet switched
Number of packets switched
Number of bytes switched
TCP flags seen

3.3 System Constraints

To produce a feasible system that can achieve the defined goals, some factors of the system

have been discussed but not implemented as they are considered out of scope.

In order to simplify the record storage and reporting processes, the system can only store

a specific set of characteristics. This requires that a constraint be applied to all templates

that the system is allowed to use for collection. The constraint is that any record being

processed by the system must at least contain the characteristics depicted in table 3.1.

The template is allowed to contain additional characteristics but these will be ignored by

the designed system.

Should it become necessary to export additional characteristics, it can be done by extend-

ing the Record class and the storage database to include the new characteristics. The

functions responsible for constructing the Record object and functions that interface with

the record database will have to be modified accordingly.

3.4 System Overview

As the system is defined to include a web based component, the system requires a server

component that can serve the web pages and handle communication between the served

pages and the rest of the system. Furthermore, for the visualisation components to

function, it is necessary for the system to include a record storage component that can

store the characteristics of the flow records that are collected.

To achieve this, the system is split into four main components which are; the Collector,

3.4. SYSTEM OVERVIEW 28

Collector Server

Flow Storage Reporter

Client

Host A Host B Host C

Figure 3.1: System Overview

the Server, the Client, and the Reporter. All of these components must be linked together

to form the complete system which is is shown in figure 3.1. This figure uses arrows to

represent the communication channels that link different components together to produce

the resulting system.

The four components are distributed into three different groups; host A, host B, and

host C. The grouping indicates a direct dependency between the contained components

while the communication between groups is done over TCP connections. By developing

the system to communicate between the different groups over a network, the system can

easily be fragmented with each group running on a different host.

By allowing the different components to communicate in this manor, it becomes possible

to situate the different components in different networks so that the Server can become

more accessible to a network segment that is separate from the segment in which the raw

flows are being exported. This allows for improved security as the Clients do not need to

access to the same network as the exporter to request pages from the server.

As mentioned in section 3.2, the Client should be designed to run in the host’s browser

and so is not required to be run on the same host as any other component of the system.

Another import point to note about the Client is that the system should be capable

of handling multiple instances of the Client simultaneously. To achieve this, the Client

should be implemented as a web page which is returned by the Server to any requesting

host.

3.5. HARDWARE AND RESOURCE CONSIDERATIONS 29

3.5 Hardware and Resource Considerations

This system is designed so that it can run at a high level and does not require any

dedicated hardware. Though it is segmented as shown in figure 3.1, it is possible to run

the entire system on a single host and, if the network packets can be internally simulated,

does not require a network connection.

3.5.1 Record Storage

Record storage is an aspect of the system that must be considered for this design. Due

to the dependence on previously collected records, the storage component must be robust

and easily accessible by the relevant functions. As reliability must also be considered, a

database should be used rather than writing the data out into files.

By using a database such as MySQL, concerns regarding algorithms for better lookup

efficiency, data corruption, and scalable storage can become the responsibility of the

database. Using a database also provides advantages in security as it includes access

control. This is discussed in section 3.6.

3.5.2 Bandwidth Considerations

Exported packets from softflowd to the Collector are transmitted using the UDP protocol.

This is because all necessary information can be transmitted in a single packet and the

overhead of a TCP connection is necessary. The reason this is possible is due to a limi-

tation in softflowd where the characteristics that are exported are predetermined and so

cannot be changed. This limitation may not exist in other implementations of a NetFlow

exporter and thus a different transmission protocol could be used.

Data being passed between the Collector and Server occurs in set volumes. Each packet

contains a single serialised record. As the serialised data is small enough to be encap-

sulated in a single UDP packet, the overhead of a TCP connection is not warranted.

Concerns regarding the loss of packets is warranted however as neither the Collector or

Server is capable of knowing that a packet was both successfully sent and received. Should

this concern become significant, communication between the Collector and Server could

be modified to use the TCP protocol rather than the UDP protocol.

3.5. HARDWARE AND RESOURCE CONSIDERATIONS 30

The bandwidth requirements between the Server and the different instances of the Client

are a significant concern. In order to keep an open channel between the Client and Server,

a TCP connection between the two components needs to be maintained.

The advantage of using a TCP connection is the additional security the connection adds

for preventing packet injection and protection from data loss due to packets being dropped.

The disadvantage of a TCP connection is the volume to traffic that will be transmitted

between the Server and the Client. This is particularity a concern for transferring large

volumes of data in response to a traffic replay request.

The volume of data can be reduced by changing the format used to transmit the replay

information. Examples can include transmitting the data according to a template to

reduce data wasted on formatting. Sending the information incrementally could also be

considered but will disrupt replay if congestion occurs on the network between the Client

and Server.

As already mentioned, this system is designed as a prototype and proof of concept so

bandwidth concerns are limited to a discussion only and implementations to resolve them

are not considered within scope.

3.5.3 Memory Considerations of the Client

As the Client will continuously be receiving information from the Server and rendering

that information, memory management of the received information is a concern.

The real-time interactive map renders the flow events as they are received from the Server.

The number of rendered events should be limited while minimising the effect on the

visualisation of the system.

A option to reduce the sprite count is to not generate a sprite for every IP address received.

If an IP address has not been rendered on the map yet, then generate a new event for

that IP address and store a handle to it. If an event for the IP address already exists on

the map, then use the stored handle to that event to reanimate it. Another approach is

to limit the number of events allowed on the map at any given time or to apply a lifetime

to each sprite so that only recent activity is rendered.

The approach taken in the design of this system is to enforce a sprite limit on the map.

When the number of rendered sprites exceeds a specified limit, the least recently added

element is removed from the map.

3.6. SECURITY MEASURES 31

3.6 Security Measures

As this system has been defined as a prototype to assist in the exploration of Network

Flows, it is not production ready in terms of security. That being said, some security

measures have been implemented and this topic must become a significant component

and be reinvestigated should this system be used in future research in the field of Network

Flows.

3.6.1 Exporter-Collector Security

A security concern is the corruption of the network traffic stream to the collector. In the

current implementation, softflowd exports raw flows under the NetFlow version 9 protocol

but using the UDP protocol. UDP packet streams are more vulnerable to malicious packet

injection as it is unable to maintain connection state or implement security. This results

in the traffic between the exporting device and the Collector being vulnerable to malicious

traffic injection.

Currently, the collector is designed to accept packets being exported to a predetermined

port on the host and only confirms that the packets are being transmitted under the

correct protocol. The Collector performs no additional checks before parsing the packets

into a format readable by the rest of the system.

This results in the system being vulnerable to packet injection provided that the crafted

packets are not malformed and are being transmitted under the correct protocol and using

the correct template. An attacker could use this to inject fictitious flows into the system

or terminate flows prematurely.

In an attempt to recognise and mitigate this vulnerability, the Collector component can

be restricted to only accept flows from a specific IP address. This restriction is employed

by setting a variable at the top of the Collector script file.

3.6.2 Collector-Server Security

A similar problem to the one stated above exists between the Collector component and

the Server component and is solved in the same manor by setting the respective IP address

and port of the Collector and Server in the relevant script files before start up.

3.7. COLLECTOR 32

3.6.3 Client-Server Security

For communication between the Client and the Server, checks need to be employed to

insure the system only reacts to valid traffic. A white list approach to identifying the

traffic the Server will accept is followed.

Each Client request has to follow a specified format, otherwise the request will be ignored

by the Server. This format is discussed in chapter 4. The contents of each request is then

sanitised in an attempt to mitigate SQL Injection vulnerabilities.

The server itself is limited to only communicate via a websocket with the exception of the

first page request. Upon page request, the server returns the index HTML file along with

the associated JavaScript to the requesting host. After rendering the page, all additional

communication must happen over a websocket.

3.6.4 Database Security

Another area where security is considered is the data storage. Many components of the

system are dependent on having access to the stored data in order to function correctly.

This security is necessary to prevent data from being deleted, added, or modified unless

it is explicitly required by the system. As a result, the database must be accessible to the

relevant system functions but should be restricted elsewhere.

A MySQL database has been selected for this implementation of the system and the

security of the database itself will not fall into the scope of this discussion. The focus of

the system security in this field will be on securing communication with the database.

To achieve this, the credentials are not hard coded into the system scripts but are passed

to the system on start up. Each connection to the server persists for the duration of the

query after which, the connection is immediately closed. Components with access to the

database are currently only Server components but as a consequence of this, the Reporter

component can only access the database through the server and so must run on the same

host.

3.7 Collector

3.7. COLLECTOR 33

Raw Collector

Packet Parser

Packet Parser

Packet Parser

R
a
w

 P
a
c
k
e

t
B

u
ff
e
r

P
ro

c
e

s
s
e
d
 P

a
c
k
e
t
B

u
ff
e
r

Record Exporter

Collected

Templates

Netflow v9 packets Server component

Parsing ComponentCollection Component Transmission Component

Figure 3.2: Collector Design

Before processing and storage of network flows and be performed, the exported packets

need to be collected and parsed. The process followed by the system is depicted in figure

3.2.

The Collector can be broken up into three subcomponents; a collection component, a

parsing component, and a transmission component. The collection component is respon-

sible for reading raw packets from a specified port and storing the packet contents in the

Raw Packet Buffer. The parsing component then reads the packets from the Raw Packet

Buffer, processes them and stores the result in the Processed Packet Buffer. The trans-

mission component reads the Processed Packet Buffer and transmits the buffer contents

to the Server.

3.7.1 Collection Component

The collection component can be represented as a flow chart as shown in figure 3.3. When

a packet is received from the specified port, the collection component first parses the

packet header in order to confirm that it is being transmitted under the NetFlow version

3.7. COLLECTOR 34

Specified Port

Listener

Is NetFlow v9?

Buffer Being

Used?

Write to Buffer

Discard Packet

Packet

Recieved

No

Yes

No

Yes

Return to Listening

Return to Listening

Figure 3.3: Collection Component

9 protocol. If the packet is not using the NetFlow version 9 protocol for transmission, the

packet is dropped and the collection component returns to listening on the port.

If the transmission protocol is correct, the collection component checks if the Raw Packet

Buffer is currently in use. If the buffer is free, the collection component stores the packet

in the buffer and returns to listening on the port.

If the buffer is being used, the collection component waits until the lock being held for

the buffer is released. Once the Raw Packet Buffer is free, the collector can then insert

the collected packet and lock the buffer for the duration of the action. Once the packet is

inserted, the collection component must immediately return to listening on the port for

any additional packets as they arrive.

3.7.2 Parser Component

The goal of the parser component is to remove elements from the Raw Packet Buffer and

create threads responsible for processing them. This is achieved by monitoring the Raw

Packet Buffer for changes in volume. While the Raw Packet Buffer contains elements,

the parser component will attempt to remove a single element to be processed. Before

the element can be removed, the parser component must first insure that the number of

currently active parse threads is below the thread limit. If the thread limit has not been

3.7. COLLECTOR 35

ENDReceive

Packet

Parse

Packet

Header

Parse

Record

Header

Template

Record? Data Record?

Parse Data

Record
Ignore Packet

Parse Template

Record

Get Next Record
Records

Remain?

Yes

No

Yes

Yes

No
No

Figure 3.4: Parse Component

reached, an element is removed from the Raw Packet Buffer and a new thread is created

to process it. If the thread limit has been reached, the parser component must wait until

an active parse thread has completed before continuing.

Each thread that the parser component generates begins by first processing the packet

header as shown in figure 3.4. From the packet header, the parser component can extract

the record count for that packet as well as the system uptime. The record count indicates

how many records are contained in the packet and is used by the parser component to

determine when all the records contained in the packet have been processed.

For each record in the packet, the parser begins by processing the header to determine

the record ID. This ID is used to determine the type of record that is associated with the

processed header. Should the value of the ID be 0, the associated record is considered to

be a data template record and should be processed accordingly. If the ID value is 1, the

record is an options template and is ignored by the current implementation of the system.

Otherwise, the template is considered to be a data record and is treated as such.

If the thread determines that the record to be parsed is a template, the thread parses

the record and creates a Template object from its contents. The process followed is

depicted in figure 3.5. The process begins by processing the record header to determine

the template ID and the number of fields contained. As the field length is set, the the

process then cycles through the record until all fields are extracted. A Template object

is then created from the extracted fields. This object is then serialised and the serialised

data is stored in a file named after the template ID. Should a file with that ID already

3.7. COLLECTOR 36

Record
Parse Template

Header

Parse field
Fields

remaining?

Construct

Template object

from fields

Serialise

Template object

Write serialised

data to

file with

template ID as

name

END

Yes

No

Figure 3.5: Processing a Template Record

END

Record and ID

Lookup template

with

same ID

Template

Found?

Exceeded

try

limit?

Sleep for interval

Process

record

according

to template

Generate

Record

object

from record

Serialise

Record

object

Store serialised

data in

Processed

Packet Buffer

YesNo

Yes

No

Figure 3.6: Processing a Data Record

exist, it is overwritten as future records with that ID will be formatted according to the

new template.

If the thread determines that the record to be parsed is a data record, the thread pro-

cesses the record according to the specified template and creates a Record object form

its contents. This process is described in figure 3.6. The process begins by attempting

to load a file named after the template ID associated with the record. Should this be

successful, the loaded template is de-serialised and used used to process the data record.

A Record object is created using the processed fields of the data record which must the

elements described in section 3.3. This object is serialised and stored in the Processed

Packet Buffer.

If a file with the associated template ID cannot be found, it could mean that the thread

responsible for processing the template has not completed yet. To account for this, the

requesting thread sleeps for a short interval after unsuccessfully loading the file. This step

3.8. SERVER 37

is repeated until the thread successfully loads the file or exceeds the maximum number of

attempts. If unsuccessful, the thread announces such and drops the record.

3.7.3 Transmission Component

The transmission component is responsible for passing the parsed records from the Pro-

cessed Packet Buffer to the Server.

The process begins by checking if any parsed records have been stored in the Processed

Packet Buffer. If this is the case, the process then attempts to acquire a lock for the

buffer. If the lock is being held by another process, the transmission component spins

until the lock is released. The transmission component then removes a single element

from the buffer and sends it to the specified IP address and port. This is done using a

UDP connection and the advantages of this connection are discussed in section 3.5.

After the record has been successfully transmitted, the transmission component returns

to checking if a record has been stored in the Processed Packet Buffer.

3.8 Server

Once the records are processed by the Collector, they are passed to to the Server (shown

in figure 3.7) to be stored and later broadcast to connected clients via the webserver

component. The functionality of the Server can be grouped into to parts; the process-

ing component that is responsible for receiving and storing records, and the webserver

component which handles communication between the Clients and the Server.

3.8.1 Processor Component

The processor component is responsible for collecting the records as they are transmitted

from the Collector. This is done by a thread that is separate from the main thread

so that it can run concurrently with the webserver component. This way the threads

can run asynchronously so that the records can be processed without interfering with

the webserver component. The process that this component follows is shown in figure

3.8 which details the flow of the raw record from the Record Collector to the platform

database and Broadcast Call queue.

38

Record

Collector

Record Storage

Geotag

Geolocation

Information

Webserver Client

Processor Component WebServer Component

Broadcast Call

Figure 3.7: Server Component

Record Storage

Basic Record

Geolocation

Infromation

Complete

Record
Flow Event

Record

Collector

Broadcast Call

Figure 3.8: Server Processor

3.8. SERVER 39

Record Geolocation

Once the records are received from the Record Collector, the first thing the processor

component does is connect to the geoIP database and request the associated geolocation

details for the IP address stored in the record. From these details, the Country, Country

tag, and coordinates are extracted and associated with the record as described in figure

3.8.

Record Storage

After the geolocation is complete, the record is stored in the database labelled Record

Storage as shown in figure 3.7 and 3.8. Following this, a flow event is built from the IP,

Country, Country tag and geolocation elements of the flow. This flow event is then sent

to the webserver component by using a broadcast call so that the event can be broadcast

to all connected clients.

3.8.2 Webserver Component

Once a the flow event is sent to the webserver component, it becomes the responsibility

of that component to broadcast the flow event to all clients that are currently connected

to the Server. In order to perform a broadcast, the webserver component needs to be able

to collect and store handles to all Clients when they connect. This must then be removed

when the Client later disconnects. This can be done using a list and is further discussed

in the implementation of this component in Chapter 4. Once the webserver component

has a list of connected clients, it can simply iterate through the list and send the flow

event to each Client.

Client Connection

As the webserver component handles all communication with the Clients, it is necessary

that a communication channel is established and maintained to allow the two components

to exchange information. This must be done so that the Server can push information to

the Client without having to wait for prompting first as this would greatly hamper the

3.8. SERVER 40

real time rendering of records. To facilitate this, a websocket connection must be set

up between the Client and the Server. In order to connect to the Server and create the

websocket, the Client must initiate a websocket connection upon start up. This connection

is what the webserver component stores for later communication. If the client makes a

request to the Server, it is though this websocket connection and must follow a specific

format. Upon receiving a valid request from the Client, the webserver component must

then connect to the database to make the appropriate queries and process the result. This

result is then packed into a JSON string which is tagged with the appropriate tag for the

client and sent back to it through the same websocket connection that the request was

received from.

The Server component will respond to three types of requests from the client; a country

details request, a heatmap request, and a replay request.

Country Details Request

The request for country details occurs when the user of the Client application wishes to

view details associated with a particular country. The user indicates such by clicking on

the country in question on the realtime interactive map. This causes the Client to generate

the appropriate request for that country. The request is then sent to the Server via the

websocket associated with that Client where it is handled by the method responsible for

processing country detail requests. The responsible method than constructs a query to

request details about the country in question from the Record Storage and processes the

results returned. The processed results show the total number of flows and the total

number of bytes associated with each IP address recorded for that country. This data is

packet into a JSON string and returned to the requesting Client.

Heatmap Request

A heatmap request occurs when a user of the Client component wishes to generate a

heatmap of a specific NetFlow characteristic within a specified time range. This informa-

tion is received by the webserver component of the Server and used to construct a SQL

statement. The statement is executed to extract information from the Record Storage

regarding the characteristic that the heatmap must be generated for. The returned data

contains all flow information relating to the request type for each country. The returned

data is weighted to lie in the range from 0 to the maximum heat and each weighted result

3.9. CLIENT 41

Replay Request

Replay Map

Heat Map

Heat Map Request

Real-time Map

WebSocket

WebSocket Component

Real-time Component

Replay Component Heatmap Component

Figure 3.9: Client Component

is then paired with its associated country. This processed list is then formatted into a

JSON string and returned to the requesting Client.

Replay Request

A replay request occurs when a user of a client wishes to replay an instance of recorded

traffic at a specified speed. The time range that flow events must be replayed from is sent

as a request to the Server via the opened websocket. This information is received by the

webserver component and the specified range of flow events is returned from the Record

Storage. Each result returned contains; a Country tag, a set of coordinates indicating

where exactly in the country the flow occurred, and the start time of the flow. This data

is used to construct a JSON formatted list which is returned to the Client requesting the

data. The efficiency concerns regarding sending large volumes of information over a tcp

connection are discussed in section 3.5. As the efficiency and bandwidth consumption of

this technique has little impact on the results this component of the system attempts to

produce, it is limited to a discussion only.

3.9 Client

The goal of the Client component of this system is to provide a web based user interface as

specified in the system definition. To achieve the defined goals, the Client is split into four

components which are; the websocket component, the real-time component, the replay

3.9. CLIENT 42

Ignore

Read Tag

Convert JSON to

JavaScript

variable

Valid JSON String

Has map been

Initialised?

Has map been

Initialised?

Has map been

Initialised?

Process Heatmap

Response

Process Realtime

Response

Process Replay

Response

Yes

No

NoNoNo

YesYesYes

Receive String

Heatmap ReplayRealtime

Listen on

Websocket
Start

Figure 3.10: Websocket Component

component, and the heatmap component. The websocket component is responsible for

handling communication between the Client and Server.

The remaining three components of the Client are the human interface components of

the system. Each of these components is designed to allow the user to view the recorded

network data in terms of its location, time of generation, and characteristic.

The replay component contains an interactive map for replaying traffic. The real-time

component handles displaying flow tags on an interactive map. The heatmap component

is an interactive map that can be coloured to produce heatmaps of flow characteristics.

The way that each of these components connect is shown in figure 3.9 along with the

contents of each component.

3.9.1 Websocket Component

For each of the front-end subcomponents to work, they must communicate with the

websocket component which, in turn, communicates with the Server. As stated in the

Server section, the Client communicates via a websocket which is created as part of the

startup sequence of the Client. After initialisation, the websocket component listens

for incoming traffic from the Server and responds according to what components of the

front-end have been activated by the user. If traffic is received for a component that

the user has yet to initialise, the traffic is ignored. A component can be initialised by

3.9. CLIENT 43

selecting the appropriate tab on the web page. This allows the user to reduce the resource

consumption of the Client if they only wish to use it to generate a single heatmap or replay

a piece of traffic without the real-time map running in the background. Further resource

considerations regarding the Client component of the system are discussed in section 3.5.

3.9.2 Real-time Component

The realtime component of the Client generates a map that, as flows are received by

the system, is populated with events representing the origin of that flow. As the map

becomes increasingly populated, the countries change colour according to the number of

flows seen from that location. This rendering begins upon initialisation of this component

and continues until the Client is terminated.

3.9.3 Heatmap Component

The heatmap component of the Client is designed to represent ratios of a characteristic

seen between countries. This is done by using a colour ratio where the brighter the colour,

the more dominant a particular country is with regards to the selected characteristic. In

order to generate a heatmap, the user must generate a heatmap request which specifies

the characteristic that the user is interested in as well as the time range the heat map

must represent. Once this request has been generated and correctly formatted, it is sent

to the Server via the websocket component. When the webwsocket component receives

data from the Server with the relevant tag indicating that the JSON formatted data is

destined for the heatmap, the data is processed into an array and the heatmap is coloured

according to the values contained. Should the user then wish to view a heatmap for a

different time range or characteristic, the process is simply repeated and the heatmap is

cleared and updated with the new values.

3.9.4 Replay Component

The replay component of the client is designed to allow the user to replay traffic that

has already been recorded by the system. To use the replay map, the user creates a

replay request which defines a time range to be replayed. An additional feature of this

component is to allow the user to define the speed of the replay. This will allow the user

to set the speed of the replay. The replay request is then sent to the websocket component

3.10. REPORT GENERATOR 44

Record StorageReporter

Report PDF Document

Figure 3.11: Reporter Overview

which in turn forwards the request to the Server. The returned JSON string includes all

the flow events that happened in the specified duration and the replay map can recreate

the event just like the realtime map but now with a scaled time factor.

3.10 Report Generator

An additional method or representing the Network Flows that are collected by the system

is to generate a printable report. This report is generated by the Report Generator

component of the system and must be capable of producing summaries and comparisons

between stored data both textually and visually. In order to generate a report that can

include both images and text as a single item, the Report Generator component includes

a pdf generator that can build a canvas from a series of paragraphs, tables, and drawings

and render the resulting canvas as a pdf.

3.10.1 Report Structure

The format of the report is static in order to simplify the generation process. The report

consists of four components. The first component is a summary of significant character-

istics seen by the system in the specified month. The second component is a bar chart

of flows seen to the top ten IP addresses in the specified month. The third component

consists of two pie charts comparing flows and data for the specified month for the top

10 countries. The fourth component is two line graphs showing flow and byte count per

country over the specified month.

3.10. REPORT GENERATOR 45

3.10.2 Characteristic summary

The characteristic summary component of the report provides a short list of characteristics

that could be of use to the viewer. The characteristics that are currently reported on are:

� Bytes Transferred

� Flows Recorded

� Number of IPs Seen

� Number of new IPs seen

� Number of Countries seen

� Number of new countries seen

� Number of ports assigned to ingress flows

� Number of ports assigned to egress flows

To goal of this component is to give a brief textual overview of the network for the given

IP address in the given month. This will allow the user to quickly see if the selected IP

address is sending or receiving traffic as well as get an idea of the traffic volume that is

being transferred.

3.10.3 IP graph

The bar graph is generated from the number of flows recorded between external IP address

and a specified IP address for which the report is being generated for. The data is sorted

so that the IP address to which the largest number of flows has been seen are first. This

data is then used to render a horizontal bar graph which is converted into a drawing and

inserted onto the pdf canvas.

3.10.4 Pie Charts

Pie charts are generated to display the volume to traffic seen to each country relative to

other countries. These charts are designed to show at most, ten segments with the tenth

segment being a concatenation of all all additional data sets. The information presented

is the total number of flows and bytes seen to each country. This information is displayed

3.11. SUMMARY 46

as a coloured segment for each country and is ordered by volume. All segments whose

volume is too small to be generated and all segments beyond the top ten are merged

together into an ‘Others’ segment.

In order to represent the volume of both bytes and flows to each country, two pie charts

are used. The segments of the first pie chart are generated from the total number of

bytes transferred and is ordered buy volume in a clockwise direction. The segments of the

second pie chart are generated from the total number of flows seen to each country. The

ordering of the countries in this chart are ordered to follow the same order as the first pie

chart rather than being ordered by volume.

The colours used for each country in these pie charts are kept constant throughout the

rest of the report.

3.10.5 Line Graphs

Line graphs are used to represent the data displayed in the pie charts as a daily progression

rather than a ratio of the totals. A separate line graph is generated for bytes and flows.

The countries represented here are chosen to be the same as the countries displayed in

the respective pie chart.

3.11 Summary

This chapter covers the design of a system to be used to investigate the use of network

flows for geolocation and traffic visualisation. During the definition of the stsyem goals, it

was decided that the system component responsible for generating the geolocation results

and some of the visual aids should be web based. In the discussion regarding system

constraints, it was decided that the characteristics collected and processed by the system

should be limited to simplify later implementation.

To account for record storage in the designed system, a MySQL database has been chosen

so that issues relating to data storage and security do not need to be considered during

design. Approaches to security concerns discussed in section 3.6 are to restrict the IP

addresses each component will accept a connection from.

The majority of the chapter focuses on detailing the design of the components that make

up the system. These design discussions focus on highlighting the goal of each component

3.11. SUMMARY 47

and its functionality in terms of the rest of the system. Approaches taken to achieve

this functionality are then detailed. The next chapter details the implementation of a

prototype system that follows the design logic detailed in sections 3.7, 3.8, 3.9, and 3.10.

Chapter 4

Implementation

4.1 Introduction

In chapter 3, the system and its constituents are defined and further described. This

includes a discussion regarding the design of each component and the necessary subcom-

ponents to enable it to achieve the defined goals. The implementation of each of these

components is described here.

This chapter begins by discussing and supporting the programming languages used to

implement the system. This is followed by a brief description of significant libraries that

are used to implement the system components.

The remainder of the chapter is focused on the implementation of the system. The struc-

ture of the implementation discussion follows that used previously in chapter 3. Each

component is considered separately and segmented further into the subcomponents iden-

tified during system design. The implementation of each subcomponent is then discussed.

This chapter concludes with a summary of the material covered.

4.2 Programming Language Section

To implement the system, it is first necessary to select a suitable set of programming

languages. For this implementation, cross platform compatibility and rapid development

are important factors that a language should feature to be considered suitable. One of

the system goals described in section 3.2 is that the system should be segmented and dif-

48

4.2. PROGRAMMING LANGUAGE SECTION 49

ferent components should be able to run on different hosts. Furthermore, section 3.2 also

identifies that the Client component of the system should run as a web based application.

The result is that the system will be implemented using multiple programming languages.

Languages to consider can be grouped into two categories; Compiled languages and In-

terpreted Languages. As this system relies heavily on network communication and the

management of data, object orientated programming and data serialisation should also

be considered in selecting the appropriate languages.

4.2.1 Compiled Languages

Compiled languages provide the advantage of compiling down to byte code that is native to

the architecture that they are compiled on. This gives optimal performance as compilation

occurs before runtime and can be optimised by the compiler. Should the performance

gains resulting in using a compiled language such as C be significantly more important

than the advantages provided by interpreted languages which are discussed next, than a

complied language should be selected for implementation.

4.2.2 Interpreted Languages

Alternatively, interpreted languages do not have the performance edge over compiled

languages discussed above. The performance loss occurs as a result of the each instruction

having to be converted into byte code native to the underlying architecture during run

time. This intermediate step increases execution time which reduces performance and

does not allow for compiler optimisations.

By implementing this intermediate step though, interpreted languages gain advantages

over compiled languages. These advantages can include dynamic typing, dynamic scoping,

and platform independence. Dynamic typing and scoping implies that the the type or

scope of a variable may not be known until runtime.

Dynamic typing allows for more generalised code to be written that can function for

different data types without implementing generics. Platform Independence results form

being able to abstract the interpreted source code away from the architecture. This is done

by making compatibility the responsibility of the interpreter running on the architecture.

4.2. PROGRAMMING LANGUAGE SECTION 50

4.2.3 Supporting Python as a Language

For this implementation of the system, an interpreted language has been decided on over

an compiled language. The decision results from the benefits of producing a system

that is platform independent and using a language that is simple and promotes rapid

development. As a result, both Java and Python were considered as potential languages

for implementation.

The specific language that has been decided on is Python as it is both Interpreted and

Object Orientated with a large set of libraries that can easily be included for object seri-

alisation and server implementation. Such libraries include Tornado1, which is a Python

library that provides asynchronous networking and a web framework, and pyGeoIP2, an

API for interfacing with geolocation databases.

4.2.4 Supporting Javascript as a language

To implement a system component to run in a user’s browser such as the Client appli-

cation, a language capable of running in this environment is necessary. The language

chosen for this implementation is JavaScript because of its compatibility with the major-

ity browsers currently available. An additional advantage of using JavaScript is a large

collection of libraries and widgets that can be used to simplify the implementation of the

application.

4.2.5 Pickle and Object serialisation

Object serialisation is the process of converting an object in memory into a format that

can be stored in a file or transmitted across the network. This is significant as the data

transmitted from the Collector to the Server is implemented as a serialised Record object.

As the chosen language is Python which is discussed in the section 4.2.3, object serialisa-

tion will be discussed and motivated based on how it is implemented in Python.

Serialisation in Python can be done using a native library called Pickle. This library

contains functions to serialise all native data types such as booleans, strings, bytes, and

integers. Pickle is also capable of serialising more complex data structures such as Lists

1http://www.tornadoweb.org/en/stable/
2https://pypi.python.org/pypi/pygeoip

4.2. PROGRAMMING LANGUAGE SECTION 51

and Dictionaries that implement these data types as well as classes and instances of these

classes.

The process of object serialisation in pickle is initiated by calling the [.dump()] method

which takes in a serialisable object and converts it into a binary stream. This binary

stream is generated from the object according to a Python specific Pickle protocol.

There are two main factors promoting the use of object serialisation over simply writing

the raw data into a formatted text file. These advantage they are space optimisation and

complexity abstraction.

By serialising the objects and storing or transmitting the binary stream, additional format-

ting to help the different components of the systems to distinguish elements is removed.

This is because the application can rely on the protocol to have formatted the data in a

known format.

Secondly, by serialising the objects, the complexity revolving around extracting the nec-

essary information form the object and writing it to a file is removed. This also removes

the difficulties involved in maintaining the format across different applications. The same

applies when the stored data must be read in and the original object be reconstructed.

Though this is similar to what the object serialisation and de-serialisation does anyway,

by using the included libraries, maintaining the process does not become a concern of the

programmer.

4.2.6 Tornado Web Server

Tornado is an asynchronous networking library and web framework that is an open source

version of the FriendFeed web server (FriendFeed, 2013). The library uses an event queue

to allow it to become non-blocking and scale to handle multiple simultaneous connections

(Facebook, 2013).

This library is used to create and maintain WebSockets as they are created and destroyed

by connecting Client applications. By using this library, concerns regarding methods

blocking communication between the Clients and Server can become the responsibility of

the created HTTPServer.

Communication with the individual Client applications is also facilitated by this library.

Messages can be sent to the applications by using the Client’s WebSocket handle and

adding the message to the HTTPServer callback queue. The main loop of the server

4.2. PROGRAMMING LANGUAGE SECTION 52

will cycle through this queue and service the request when it is safe to do so. A similar

approach can be used to broadcast messages to all connected Client applications.

4.2.7 ReportLab

ReportLab is an open source library for creating documents and drawings. The library

allows the programmer to create documents in Adobe’s Portable Document Format (PDF)

which can include both text and drawings (ReportLab, 2013).

For the purposes of this implementation, reportlab is used to construct a PDF document

from a series of drawings, tables, and paragraphs. This is done by building a list of

drawable objects which are generated from the characteristics to be reported on. This list

is then built into a document by using the build function included in a SimpleDocTemplate

class.

4.2.8 pyGeoIP

Pure Python GeoIP API (pyGeoIP) is a Python library used for determining geolocation

information associated with an IP address (Ennis, 2013). The library was ported from the

Pure PHP GeoIP API which was developed by Jim Winstead and Hans Lellelid (Lellelid,

2013).

The library allows for the creation of a GeoIP class that accepts a file name as a parameter.

This file name is the path to a binary GeoIP database. The class includes a IP lookup

method that accepts an IP address as a parameter and returns the geolocation details

associated with the smallest subnet which includes that address.

Binary GeoIP databases are supplied by MaxMind which the pyGeoIP library is developed

to support (MaxMind, n.d.). MaxMind supplies databases based on the users require-

ments which can be downloaded after purchasing the appropriate site licence. MaxMind

also supplies a free version of the GeoIP City database which is referred to as the GeoLite

City database (Maxmind, 2013).

4.3. COLLECTOR IMPLEMENTATION 53

Parser Thread

Parse Thread

Parse Thread

Parse Thread

Parse Thread

Raw Packet Buffer

Collector

Thread

R
a
w

 P
a
c
k
e

t B
u
ffe

r
Sender Thread

Network

Interface

Figure 4.1: Collector implementation

4.2.9 Threading

To create a system that can communicate over an asynchronous medium such as a network,

it is important that the implementation be capable of handling multiple events. As these

events can happen simultaneously, the system needs to be developed to service them in

parallel rather than sequentially. To facilitate this, the system employs threading to run

the different subcomponents 3.

4.3 Collector Implementation

The Collector is implemented as a multi-threaded application. To achieve this, the Client

is split into three threads which are spawned from the main thread when the Collector

is run. These threads are the collector, parser, and sender threads. In figure 4.1, the

interaction between threads is done using two buffers.

After the three threads are spawned, the main thread goes into a cycle so that the appli-

cation does not terminate. In future implementations, the main thread could be used to

monitor and report on the status of the application as it could do so without interfering

with the functionality of the other threads.

3This is done using the Python Threading library.

4.3. COLLECTOR IMPLEMENTATION 54

Upon initialisation, both the collector and sender threads open a socket and bind them

to the ports specified in the Collector and Processor variables. For this implementation

of the system, the buffer for receiving packets is set to 512 bytes as this is the maximum

packet size used by SoftflowD.

4.3.1 Network Protocols

Both the collection and transmission components of the Collector as can be seen in figure

3.2 use the Python Socket library to open a port for UDP communication.

UDP has been chosen over TCP for the transmission as the data being transmitted from

the Collector to the Server is small enough to be encapsulated in a single datagram.

Because of this, the transmission does not warrant the overhead resulting from setting

up and tearing down the TCP connection. The reason for using UDP communication

between the collector and the exporter is because SoftflowD exports the generated flows

using the UDP protocol which is further discussed in section 3.3.

4.3.2 Collector Thread

The collector thread is implemented as a subclass of the threading class which is included

from the python threading library. As described in section 4.2.9, this subclass requires

a run method which is called to spawn the thread. During initialisation of the Collector

thread, the UDP socket is opened using the credentials specified near the top of file.

When the run method is called, the thread goes into a cycle where is listens on the opened

socket for an incoming packet from the exporter. When the collector thread receives a

packet from the socket, it attempts to store the packet in the Raw Packet buffer. To do

this, the thread first attempts to acquire a lock for the Raw Packet Buffer. If the lock

is successfully acquired, the packet is deposited in the buffer. The Raw Packet buffer is

implemented as a list with global scope so all threads spawned by the Collector application

can access it. Associated with this buffer is a lock which must first be acquired before

attempting to use the buffer.

4.4. NETFLOW PACKET PARSING 55

4.3.3 Sender Thread

Implementation of the sender thread uses the same techniques as the collector thread. A

subclass of the threading class is defined which includes a run method. During initialisa-

tion of a sender thread object, a socket with the Server component is opened.

When called, the run method causes the thread to go into a loop where it continuously

checks to see if the Parsed Packet buffer is not empty. The Parsed Packet buffer is

implemented as a list with global scope akin to the Raw Packet buffer. Associated with

this buffer is another lock which is used by the application to indicate if the buffer is in

use or not.

If the buffer is not empty, the sender thread attempts to acquire the associated lock. On

a successful attempt, the thread removes a single element from the buffer and passes it to

the Server component via the opened socket. Details regarding how the element is packed

into a datagram and transmitted is abstracted away by using the python socket library.

4.4 NetFlow Packet Parsing

The actual parsing of the packets is done sequentially by the parser script. The process

begins by parsing the header of the packet to determine if it is a data or template record.

If the is a template record, the parser then proceeds to parse the remainder of the record

and generates a Template object from the resulting data. This Template object is then

serialised and written to a file in the local templates directory using methods supplied by

the Pickle library. These files are then available to be read in by other instances of the

parser script.

Should the record be a data record, the parser then attempts to read in the associated

template record from the local templates directory. If successful, the template file is

serialised back into a template object and the data record is parsed according to the

template to create a record object. This record object is then returned to the caller of the

script. Should the script fail to find the associated file, it will wait for 200 ms before trying

again and repeat this three times. If after the third iteration the file is not available, the

parsing of that record fails and the record is dropped.

4.5. SERVER IMPLEMENTATION 56

4.4.1 Parser Thread

The parser thread is responsible for removing elements from the Raw Packet buffer and

spawning additional parse threads to to parse the elements. It achieves this by continu-

ously monitoring the Raw Packet buffer for elements. When the buffer is not empty, the

parser thread checks if the number of currently active parse threads exceeds the thread

limit specified near the top of the script.

When the limit is not exceeded, the thread attempts to acquire the lock for the Raw

Packet buffer to remove an element. Once an element is removed, a new object of the

parse thread class is created. This thread is passed the element and the associated run

method is called.

The thread count is incremented and the parser thread goes back to monitoring the Raw

Packet buffer.

4.4.2 Parse Thread

The parse thread then calls the parse method from an imported script. This method

parses the packet and if it is a data record, returns a record object. The parse thread

then takes this record object and serialises it using method supplied by the Python Pickle

library. After the appropriate lock is acquired, the resulting data string is inserted into

the Processed Packet buffer.

Once complete, the parse thread then decrements the thread count before terminating.

4.5 Server Implementation

The implementation of the server is done in Python relies on the pygeoip and tornado

libraries amongst other to function correctly. The implementation of this server is done

so that the separate components discussed in chapter 3 can run asynchronously.

4.5. SERVER IMPLEMENTATION 57

Processor WebServer

Record Storage

Geolocation

Database

Callback

Queue
Collector

Clients

Figure 4.2: Server implementation

4.5.1 Processor Component

As with the transmission and collection components of the Collector, the processor com-

ponent of the Server uses the Python Socket library. This is used to open a connection

for receiving UDP packets as they are sent from the Collector to the Server. Each packet

contains exactly one record that has been serialised using the Python library Pickle which

is discussed in section 4.2.5.

In figure 4.2, processor component runs as a separate thread so that it does not block other

components of the script from executing. This is important as the processor component

will block while listening on an opened socket.

Packet Collection

The process of collecting and storing the records is the responsibility of a thread spawned

by the main thread of the Server during the start-up phase of the script. As with the

threads in the Collector, this thread is implemented as a subclass of the threading class

provided by the threading library. This thread opens a socket using the collector creden-

tials and listens for UDP packets. The collector credentials are set in a variable near the

top of the script so that a user can easily edit it prior to execution of the script.

When a packet is received from this socket, the thread uses the Python Pickle library to

de-serialise the packet payload back into the record object sent from the Collector.

4.5. SERVER IMPLEMENTATION 58

Flow Geolocation

Once the record is de-serialised, the thread then compares the record destination IP

address with a list of Internal IP addresses. If the IP address matches any element in

this list, it is considered to be an ingress flow and the geolocaion should happen on the

Source IP address rather than the destination IP address. Due to the limitation of using

softflowd as the network flow exporter, development of the system as been done as a host

based system that handles flows for a specific host. As a result, development of the system

to handle multiple source ip addresses is limited.

Once the appropriate IP address is determined, the thread uses the pygeoIP Python

library to look the address up in a geolocation database. For this implementation, the

geolocation database used is the ‘GeoLite City’ database which is provided for free by

MaxMind (MaxMind, n.d.). The lookup returns a geolocation record from the database

that includes the country name, country tag, and the geolocation coordinates of the IP

address that was used to perform the lookup.

Record Storage

The country tag and geolocation coordinates are extracted and associated with the flow

record. In order to store the collected information in the local flow record database, it

is first necessary to see if there is a record associated with the flow which has not been

terminated yet.The reason for this additional requirement on storing the records is because

the exporter is instructed to report on all flows that are active regardless of whether or

not they are complete in set intervals. The reasons for this are discussed in section 3.5.

To achieve this, the components of the record that form the primary key are used along

with the ‘Completed’ field which indicates whether the TCP FIN flag has been seen yet

to form a SQL query. If the database response to the query is empty, then this is the

first time that the flow has been seen and it can be inserted directly by means of an

INSERT SQL statement. If the database response is not empty, then the record returned

must be merged with the new record to update the duration, bytes transferred, packets

transferred, and whether the TCP FIN flag has now been seen. This updated record is

then inserted into the database by means of a REPLACE query to update the stored

record.

4.5. SERVER IMPLEMENTATION 59

Event Queue

Client Requests
 Broadcast

Messages

Pop Event

Service Event

Main loop

Event Generators

Figure 4.3: Overview of the event handling by the WebServer

Adding to the Callback Queue

Once the record is stored, the thread instructs the tornado main thread to add a signal

broadcast call to its callback queue. This method call takes the record that was stored as

a parameter which includes the geolocation information and extracts the IP address, the

coordinates, and the Country tag. This information is then used to create a JSON string

which is then sent to all currently connected clients by using the write message method

associated with a tornado WebSocket object.

4.5.2 WebServer Component

The second component of the Server is the webserver component which interfaces with the

processor component by servicing callbacks added to an event queue shown in figure 4.3.

The implementation of this component is done using tornado which is discussed in section

4.2.6. The webserver component also acts as the communication point between connected

Clients and the rest of the system. The communication is handled by maintaining a list

of WebSocket objects, one for each connected Client. Broadcasting messages such as a

flow tag for real-time rendering is done by iterating through this list and writing the

broadcast message to each WebSocket. The webserver component can be seen adjacent

to the processor component in figure 3.7.

4.5. SERVER IMPLEMENTATION 60

Table 4.1: List of implemented request tags

Tag No. Request Type
0 Country Details Request
1 Flow heatmap request
2 Btye heatmap request
3 Packet heatmap request
4 IP heatmap request
5 Flow even replay request

Setting up the WSHandler

The WebSocket is set up by adding a WSHandler object to the tornado HTTPServer

class which allows the script to add additional functionality to the basic methods. To

add the functionality, the WSHandler bust include a method with the same signature as

basic method to be enhanced. This allows the HTTPserver to know to call the method

in the WSHandler once it has completed execution of the basic method with the same

signature. By using this functionality, the basic ‘open’ method of the HTTPServer can

be overridden to include functionality for storing references to opened web sockets. This

is done by maintaining a list of references which the new websocked is appended to.

The same technique is used to allow the HTTPServer to remove a WebSocket from the list

when the ‘on close’ method is called. In this case, the maintained list is iterated through

and the reference WebSocket being closed is removed.

Handling Server Responses

For the HTTPServer to respond appropriately to client requests, a list of the possible

response functions is kept with the index to each method in the list being associated with

a tag element. This element is used in every message between the Client and Server to dis-

tinguish between different requests and the associated responses. Should the HTTPServer

receive a request with an unknown tag, the request is simply ignored. The possible re-

quests that the Server will respond to are listed int table 4.1.

Country Detail Request

A country detail request requires a country tag which is checked against an internal list

to insure the requested tag is valid. The details associated with that country tag are then

4.6. WEB CLIENT IMPLEMENTATION 61

collected from the flow record database and returned to the method handling the request.

The method then uses the returned information to construct a list of the different IP

addresses seen from that country. Associated with each of these addresses is the number

of bytes and the number of flows that are recorded for that IP address. This data is

packed into a JSON string and sent to the requesting WebSocket.

Heatmap Request

The heatmap requests are differentiated according to the characteristic that is being

requested. For each request, a start and end time is required and indicates the duration

over which the the country heats must be constructed. As with the country detail request,

a query is built and used to request the details from the system database. How the

method handling the request then processes the results depends on the type query that

was executed which in turn depends on the characteristic that was requested. For the

flows, bytes, packets, and IP characteristics, the process is the same; the characteristic is

tallied for each returned country and both the minimum and maximum value is recorded.

These values are used to create a range. This ratio is then applied to the value associated

with each country in the list. The scaled results are used to construct a JSON string to

be returned to the requesting WebSocket.

Replay Request

Replay requests are used to generate a list of flow events for the requesting client to render.

After the event information is returned from the system database, the method responsible

for handling the request constructs a FlowEvent object for each record returned. A

FlowEvent requires the IP address, the coordinates, the country tag, and the start time

of the event. This object acts as a container that can later produce a string of the elements

in the correct order. A JSON string is generated using this functionality of the objects

and sent to the requesting WebSocket.

4.6 Web Client Implementation

As discussed in chapter 3, the Client component of the system is designed to run as

a web application within the user’s browser. To achieve this, the Client component

4.6. WEB CLIENT IMPLEMENTATION 62

is implemented as web page and written using HTML and JavaScript, specifically the

JQuery library.

4.6.1 Interface Structure

As the Client must contain three distinct components discussed during its design, the in-

terface must be segmented accordingly. For this implementation, segmentation is achieved

by using tabs. The interface consists of four tabs, one for each component and an addi-

tional tab for the introduction.

For the replay and heatmap components, additional dialogues are required to allow the

user to specify details for selecting the information to be rendered. Dialogues are produced

using bpopup by Klinggaard4 to produce the dialogues on user request.

4.6.2 Initialisation

After the Server has returned the Client to a requesting web browser, the Client appli-

cation begins by rendering the HTML file and calling the JavaScript ‘ready’ function

associated with the rendered document. This function in turn begins the initialisation of

the Client by creating a WebSocket connection with the server.

Once the WebSocket has been created, the Client sends the value ‘-1’ to the server. This

is done to open the connection between the two components otherwise the WebSocket

exists but remains closed until data needs to be passed from the Client to the Server.

Once connection with the Server has been established and the web page is rendered,

the start-up phase is considered complete. Initially, none of the Client components are

enabled and any information received from then Server regarding them is ignored. When

the users wishes to use a Client component, the initialisation of that component will begin

when the relevant tab is selected.

4.6.3 WebSocket Communication

Once start up is complete, the Client listens on the opened WebSocket. When data is

received via this socket, it is run through the parseJSON function of the jQuery library.

4http://dinbror.dk/bpopup/

4.6. WEB CLIENT IMPLEMENTATION 63

After the string has been parsed, the application enters a switch statement using the ‘tag’

element in the parsed string as the switching expression. The cases of this statement

determine which component of the Client the parsed string is for. If the associated

component has not been initialised yet, or the tag is not serviceable by the Client, it is

discarded.

Sending data to the Server via the WebSocket is the responsibility of the relevant com-

ponents. The format of each message is a string of comma separated values. The first

value is a tag which indicates the type of request and the remaining values are discussed

further in the different component sections.

4.6.4 Map Initialisation

The initialisation of each interactive map is achieved by following the same format.

When a tab is selected for the first time, the interactive map for that component is

initialised. To do this, a Raphael object is created using the current tab window size.

Following the object creation, a path is added to the Raphael object for each path list in

the paths JavaScript file. Associated with each path list is the country name, flow count,

and map colour.

Two dictionaries are created for storing the generated paths, a dictionary for storing

country names, and a dictionary for storing the actual paths. In the country names

dictionary, a country name of each path is stored by using the path id as a key. The

second dictionary also uses the country path id as a key but pairs it with the entire path

which is then stored.

Functionality for responding to a mouse hover event is added to each path which renders

a small popup box which includes the country name. Additional functionality provided is

discussed in the separate components. After all paths have been generated, the dictionary

of paths is then scaled to fit the Raphael object. An example of the resulting interactive

maps is depicted in figure 4.4 and is similar to the map generated by the Honeynet project
5. This similarity is expected as the JavaScript path file used in this implementation was

generated using the paths associated with the Honeynet Project map.

5The Honeynet Project map HoneyMap is discussed in section 2.6

4.6. WEB CLIENT IMPLEMENTATION 64

Figure 4.4: Example of a generated interactive map

4.6.5 Live Communication

The initialisation of this component begins when the user selects the tab labelled ‘Real-

time’. The creation of the interactive map follows the format described in section 4.6.4

above with the exception of the functionality added to the paths. In addition to display-

ing the country name when the ‘onHover’ event occurs, the realtime map also reports on

the number of flows seen to that country.

Additional functionality is also added for on click events. When the user selects a country,

a pop is displayed which includes a table. The able is populated with the IP addresses

recorded from that country along with the total number of flows seen from that IP address

and the total volume of data transferred.

The rendered information is received as a response to a realtime request from the Server

application. The request is generated when the user selects a country. This request

includes the appropriate tag and the time range the response should cover. The time

range is set to be the duration the realtime component has been active for.

Once the map has been generated, any flow event the Client receives from the Server

will be rendered. In order to render a new event, the geolocation coordinates are first

transformed into position coordinates on the map. This is done by scaling the geolocation

coordinates by the realtime map dimensions. Using these scaled coordinates, a Raphael

circle object is created to be rendered at that location on the map. This object is coloured

yellow and is animated to ‘pulse’ during rendering. The new circle object is then stored

in a JavaScript array.

4.6. WEB CLIENT IMPLEMENTATION 65

Table 4.2: Possible heatmap characteristics

Tag Characteristic
1 Flows
2 Bytes
3 Packets
I4 P addresses

Once the number of stored events exceeds a limit of 200 elements, the JavaScript shift

function is called which shifts the array contents to the left and the first array element is

removed.

4.6.6 Heatmap Generation

The heatmap component is initialised when the user selects the Heatmap tab and beings

by generating the interactive map. The generation of the heatmap display follows the

format described in section 4.6.4 and does not include any additional functionality.

To use this component, the user must select a generate heatmap button which causes the

Client to render a popup window containing components to aid in generating a heatmap

request. The components displayed are; a drop down list for specifying the characteristic

being rendered, a colour picker to select the heat colour of the generated map, and a date

range slider for specifying the time window that the Server should generate the map for.

The items in the drop down list are characteristics that the Server can produce heat

mapping of. The current implementation supports four characteristics tabulated in table

4.2.

The colour picker is a component that is not used to generate the Server request but the

result is stored by the Client. Until changed, all heatmap response messages received from

the Server are rendered using the selected colour. This colour is changed to the default

colour on each heatmap request unless specified otherwise.

The date range slider is implemented using the jQDateRangeSlider library supplied by

Gautreau6. The slider allows the user to select a time range with day resolution by moving

and resizing the slider.

When the user clicks submit, the values from the date range slider and drop down list are

used to generate a string of three comma separated values. The first value is an integer

6http://ghusse.github.io/jQRangeSlider

4.6. WEB CLIENT IMPLEMENTATION 66

representing the selected characteristic. The remaining two values are the start time and

end time respectively. The time values are measured as seconds since the epoch. The

generated string is then sent to the Server via the maintained WebSocket.

The structure of the Server response message is discussed in section 4.5.2 which is con-

verted from a JSON string into a container containing a tag and an array. To render the

response data as a heatmap, the Client iterates through the response array and colours

the heatmap countries accordingly. The colouring is done as an animation. An example

rendered heatmap for each characteristic shown in table 4.2 can be found in appendix C.

The four heatmpas were generated using the same source data.

4.6.7 Historical Replay

The replay component of the Client is initialised once the user selects the Replay tab.

Once selected, the Client generates an interactive map as described in section 4.6.4. After

the map has been rendered, the user can initiate a replay action by selecting the replay

button which generates popup window.

The popup contains two components to aid in generating the replay request string. The

first component is a simple slider for selecting the speed at which the traffic should be

replayed. The second component is a range slider for selecting the time range for replaying

traffic.

The traffic replay speed is stored by the client while the date range is used to generate

a comma separated string along with the appropriate to act as a request to the Server.

When the WebSocket receives a replay message from the Server and the replay map has

been initialised, replay can begin.

The data returned form the Server includes an array of flow events. This array must then

be iterated through at the user specified speed.

The replay function uses the JavaScript SetInterval function which calls a function passed

as a parameter in set intervals. The called function uses a global variable called position

that indicates the replay position in the event array. Once the position reaches the end

of the array, the replay function is stopped as all events have been replayed.

On each iteration, the called function loops through the events, checking the associated

time of each until a time is found that exceeds the current replay time. For each checked

event, a Raphael circle object is created and rendered in the same manor as described in

4.7. REPORTER IMPLEMENTATION 67

subsection 4.6.5 and the global position variable is incremented. Once the current replay

time is exceeded, the time is increased according to the user defined speed or replay and

the function ends.

4.7 Reporter Implementation

To implement the Reporter discussed in chapter 3, a Python library called reportlab has

been used. This libray is further discussed in section 4.2.7. The Reporter is dependant

on the host providing the system database and is not available from the web client. As

a result, the implementation of this system is done with the requirement that it be run

with a database connection.

The application begins by ensuring the correct arguments have been passed upon start-

up. Regular expressions are used to match the date and IP arguments against patterns.

The date pattern insures that the month component lies between 1 and 12 and the year

component is a four digit number. The pattern for matching the IP address requires that

a IPv4 address is passed in dotted quad notation. This pattern checks to insure that the

address lies in the range from ‘0.0.0.0’ to ‘255.255.255.255’.

The moth argument is the passed to a function which returns the start date and end date

of the month in seconds since the epoch. This is done using the ‘mktime’ and ‘strptime’

functions of the python time library. These two times are used in all data requests as the

time range for the request.

4.7.1 Chart Colours

To keep colours uniform throughout the report and insure it that once a country has

been assigned a colour, no other country may use that colour, a dictionary of colours is

created. Associated with this dictionary is a function ‘getColour’ that returns the colour

associated with the country passed to it as a parameter.

This function works by attempting to extract a colour from the dictionary by using the

passed parameter as a key. If the parameter does not exist in the dictionary, a colour is

popped off a list of predetermined colours and associated with it. The pair is added to

the dictionary and the colour is returned.

4.7. REPORTER IMPLEMENTATION 68

Figure 4.5: Example of a generated list of statistics and IP chart

4.7.2 Report Structure

As stated in chapter 3, the structure of the generated report is static which allows the

Reporter application to generate the report procedurally. An example of the generated

report can be found in appendix B. To generate a procedural report, a list containing all

the drawings is used and built into the PDF document. The order in which the drawable

elements appear in the list indicates the order in which they are rendered.

The structure of the report begins with a title which includes the Month that the report

is generated for. This is the first object to be appended to the report list.

To have multiple objects render with the same vertical coordinates, a Table object is

needed. The table can then have multiple columns, each with a Drawing object contained.

A table is used regularly throughout the remainder of the report.

Characteristics List and Bar Chart

The first two components of the report are a list of general statistics and a bar chart. An

example of these two components is depicted in figure 4.5 which is placed directly beneath

the report title.

For each characteristic shown in figure 4.5 and discussed in chapter 3, a SQL query is

performed to get the associated value from the system database. The query is limited to

time ranges representing the beginning and end of the specified month.

4.7. REPORTER IMPLEMENTATION 69

Figure 4.6: Example of generated pie charts

The horizontal bar chart represents the top 10 IP addresses seen in the specified month.

The IP addresses are retieved from the system database usng a SQL query and the image

is rendered from a HorizontalBarChart object. In figure 4.5, the x-axis represents the flow

count and the value range is designed by report lab to span from the smallest element to

the largest element rendered 7.

Pie Charts

The pie charts are are used to represent the amount of data transferred and the number

of flows seen to up to ten countries. Figure 4.6 shows and example of the pie charts that

the current implementation can generate. For each chart, the associated function call is

made to get a weighted list of countries from the system database. The weight of each

element in the returned list represents the volume of traffic seen and is determine wedge

size.

In both cases, the generation of the chart is the same. The list of countries and values

that is returned from the function call is split into two separate lists, one for the country

names and the other for the values. A colour list is then generated using the names list

and the ‘getColour’ function.

Using the generated lists, a reprotlab Pie object is created and populated. A reportlab

Legend object is also created for presenting the countries and the associated colours. A

7Axis labels are not possible in the current version of reportab and so no axis in this report are labelled.

4.7. REPORTER IMPLEMENTATION 70

Figure 4.7: Example of a generated line graph

separated object is necessary for the legend as the Pie object does not have a native legend

component.

Line Graphs

The report line graphs towards the end of a report represent the volume of bytes and

number of flows seen by the system. This data is represented as a daily progression for

the 10 most significant countries seen previously in the report 8.

The example line graph in figure 4.7 was generated for a single instance of traffic and

depicts each country rendered using a different colour. Similar to other generated images,

a database query is used to extract the relevant data from the system database. This

data is a list of the 10 countries to be rendered along with traffic values for each day in

the specified month. The values are dependant on the type of line chart generated.

As with the pie charts, the returned data is split into separate lists and the country names

are used to create a list of colours. A reportlab LinePlot object is created using these

lists and a legend object is associated with it. The legend, positioned to the right of the

image, relates each colour to its assigned country code.

8Country significance is currently determined by the average amount of data seen each day.

4.8. SUMMARY 71

Report Generation

After all the necessary drawings have been added to the report list, the list is built on

a document template by calling the build function associated with that template. This

function handles the generation of the document and stores the result as a pdf.

4.8 Summary

Python and JavaScript were the programming languages selected to implement the sys-

tem. This selection was motivated in section 4.2 which is followed by a brief overview of

significant libraries used as part of the implementation. The remainder of this chapter is

devoted to the implementation of system designed in chapter 3. The approach taken in

each component is documented and discussed in further detail to highlight how the design

logic was implemented.

The next chapter discusses the testing and evaluation of the system implemented here.

The system is also run in a live environment to further test and demonstrate the func-

tionality of the implementation.

Chapter 5

System Evaluation

5.1 Introduction

This chapter focuses on testing and verification of the implementation of the system de-

scribed in chapters 3 and 4. The testing checks conformance of the geolocation components

as well as system performance with regards to timing and generated traffic. These tests

are done to insure the implementation is capable of achieving the system goals defined in

section 3.2.

Following testing, the system is used in a live environment to demonstrate some of the

implemented functionality. The demonstration is performed on a large file transfer using

a peer to peer file sharing. The system was then used to visualise the network traffic for

the duration of the transfer.

This chapter concludes with a chapter summary which briefly discusses the results found

during the testing of the implemented system.

5.2 Geolocation conformance testing

The system implemented in chapter 4 is capable of performing geolocation on network

flows and rendering the result on a world map. To confirm that the implementation

is correct and the system performs the geolocation adequately, conformance testing is

necessary.

72

5.2. GEOLOCATION CONFORMANCE TESTING 73

The conformance testing will use an external application to perform geolocation on a

known IP address. The coordinates returned will be rendered on a google map to visibly

display the address location. Network traffic will be simulated which uses the known IP

address and replayed to softflowd. This simulated traffic will then be passed to the system

and the rendered flow event on the world map will be recorded. The two rendered maps

will be compared and a conclusion will be drawn regarding the accuracy of the system in

terms of flow geolocation.

5.2.1 Tools Used

The system tests were performed using generated test data for which the results were

recorded. In order to generate the test data and record the results, a series of applications

were employed during the testing phase of the system.

tcpdump As part of the generation of test data, a valid sample traffic set needed to be

recorded for modification. The collection of these packets was done with tcpdump1.

tcpdump was set to listen on the loopback interface of the testing platform and

record all traffic seen. The application then stored the recorded traffic in a pcap

file.

tcpreplay Once traffic has been collected and stored by tcpdump, the next stage was

to modify the file to produce the appropriate test data. These modified files were

then replayed back onto the interface for the system to detect. The replaying was

performed using tcpreplay2.

scapy After traffic has been saved into a pcap file, it then needs to be modified to so that

it can represent traffic to and from specified host addresses. Packet modification

was performed using a Python script build using the Scapy library. This library

was written by Biondi and provides functionality for packet manipulation as well as

saving and loading network traffic stored in pcap files3.

softflowd The system has been implemented to function as a network flow collector and

processor but cannot generate the network flows itself. To generate the flows, an

application called softflowd4 was employed.

1http://www.tcpdump.org/release
2http://prdownloads.sourceforge.net/tcpreplay
3http://www.secdev.org/projects/scapy/files/scapy-latest.tar.gz
4http://code.google.com/p/softflowd/downloads/list

5.2. GEOLOCATION CONFORMANCE TESTING 74

Maxmind Online Geolocation To test the accuracy of the geolocation component of

the system, an application capable of performing geolocation was required. The

results from this application would then be compared with the result of the im-

plemented system. The application chosen was the online GeoIP2 Precision Demo

provided by MaxMind (MaxMind, 2013). This application uses the same geoloca-

tion database as the system and so will make inaccuracies incurred by the current

implementation apparent.

Google Maps To actually render the geolocation results from the online geolocation

demo, an system was needed that could accept coordinates and plot them on a

map. The system used during testing to achieve this was Google Maps which is an

online map rendering service designed by Google5.

Wireshark The traffic produced by the system was recorded using a network protocol

analyser called Wireshark6. The traffic was then filtered and statistics of the traffic

were generated.

5.2.2 Method

To generate the test traffic to be used, two options were considered. The necessary packets

could be constructed entirely in the test bed or legitimate traffic could be collected and

modified to suit the needs of the test bed. After considering the difficulties involved in

either approach, it was decided that modifying legitimate traffic would be the optimal

choice.

The legitimate traffic was generated using a simple Client/Server model which consists

of a Client script and a Server script. The Server script creates and listens on a socket

for TCP connections. Then a connection is received, the server reads the contents of the

traffic being passed through the connection and prints it before closing the connection.

The Client script begins by creating a TCP connection with the Server script. Once the

connection is established, the Client passes a string message to the Server script before

terminating.

The traffic generated from running this model was written to a pcap file using tcpdump.

The resulting pcap file was then read into a Python script which used the Scapy library

to modify the packet headers. The modified data was then written into a new pcap file.

5https://maps.google.com
6http://www.wireshark.org/download.html

5.2. GEOLOCATION CONFORMANCE TESTING 75

Table 5.1: Table of IP addresses used in conformance testing

IP Address Country
42.69.78.7 Taiwan

189.60.150.30 Brazil
119.81.44.63 Singapore

142.231.123.92 Canada
82.154.2.224 Portugal

146.231.123.92 South Africa

To replay the modified traffic back onto the wire, tcpreplay was used which read the pcap

file and reproduced the necessary packets.

The replayed traffic was processed by by softflowd which in turn generated the raw flows

and exported them to the implemented system. The system results were then rendered

on the realtime map of a connected Client via the web browser.

Addresses Used

A list of six IP addresses were chosen to to be used in the geolocation testing and are

tabulated in table 5.1. These six were chosen as the coordinates they resolve to lie near the

edges of the rendered map. Furthermore all these addressees lie near a coastline. These

conditions are advantageous for testing as it makes any inaccuracies in the geolocation

rendering component more apparent.

External Geolocation

After selecting a set of IP addresses, the next step was to find the associated coordinates

of each. To do this, the online GeoIP2 Precision Demo was used. The resulting table is

displayed in figure 5.1.

Google Map Rendering

76

Figure 5.1: Geolocation information returned by the GeoIP2 Precision Demo

5.2. GEOLOCATION CONFORMANCE TESTING 77

System Geolocation Rendering

Using the coordinate results tabulated in figure 5.1 and Google Maps, the geographic

location of each coordinate was rendered. Figure 5.2 shows a screen capture for each

result.

The figures in 5.3 were generated from screen captures after replaying the simulated traffic

for each IP address onto the loopback interface of the testing platform. This traffic was

recorded by softflowd which generated the appropriate network flows. The flow events

were then rendered on the interactive map of a connected Client showing the system

geolocation results for each IP addresses.

5.2.3 Results

Comparing the images rendered in google maps to the images rendered from the imple-

mented system, it is clear that there is a close correlation. To confirm that the coordinates

generated by the system implementation match the coordinates displayed in figure 5.1,

the associated records are extracted from the system database. The returned records are

shown in table 5.2.

Inaccuracies do however exist in the geolocation databases that the implemented system

relies on. The IP address geolocated in sub figures 5.2(b) and 5.3(b) belong to Rhodes

university which is not situated at the geolocated coordinates. The physical location of

this institute is recorded using Google Maps as marker B in figure 5.4. The distance

between the actual location of the host and the geolocated position is 310.69 kilometres.

Relative to a global scale, this inaccuracy is not large to consider geolocation unsuccessful

but should warrant concern regarding geolocation accuracy.

78

(a) Google map lookup for IP: 189.60.150.30 (b) Google map lookup for IP: 146.231.123.92

(c) Google map lookup for IP: 119.81.44.63 (d) Google map lookup for IP: 142.231.123.92

(e) Google map lookup for IP: 42.69.78.7 (f) Google map lookup for IP: 82.154.2.224

Figure 5.2: Geolocation using Google Maps for coordinates from 5.1

79

(a) Rendered flow event for IP: 189.60.150.30 (b) Rendered flow event for IP: 146.231.123.92

(c) Rendered flow event for IP: 119.81.44.63 (d) Rendered flow event for IP: 142.231.123.92

(e) Rendered flow event for IP: 42.69.78.7 (f) Rendered flow event for IP: 82.154.2.224

Figure 5.3: Images rendered by system for geolocation

80

Figure 5.4: Physical[B] and Geolocated[A] location of IP 146.231.123.92.

Table 5.2: Database Records Extracted

Destination IP Packets Bytes Latitude longitude Country Code
42.69.78.7 5 280 25.0392 121.5250 TW

189.60.150.30 5 280 -22.9000 -43.2333 BR
119.81.44.63 5 280 1.3667 103.8000 SG

142.231.123.92 5 280 49.2836 -123.1041 CA
82.154.2.224 5 280 38.7167 -9.1333 PT

146.231.123.92 5 280 -30.7954 27.9647 SA

5.3. SYSTEM PERFORMANCE TESTING 81

5.3 System Performance Testing

To test the implemented system, performance with regards to timing and data transferred

must be monitored while the system is in use. Tests are performed for different stages of

the system to determine the time required to generate a geolocated flow event from an

exported raw network flow.

Traffic use was recorded using Wireshark for interactions between the Server and the

Client. These tests were performed multiple times to determine if excessive traffic was

being generated by the implemented system.

5.3.1 Timing and Accuracy

Timing tests were performed for significant stages in the implemented system. These

stages include the time taken to interface with the database for record storage as well as

the time taken to perform a geoIP lookup in the geolocation binary file. Other stages of

interest are the time taken to parse a raw packet received from the export device and the

time required to serialise a single record for transmission.

System Process Time

The time taken for the implemented system to process a raw flow and produce a flow event

is recorded to be approximately 0.05 seconds or 50 milliseconds. This is performed by

recording the time when the system receives a raw network flow to the time the associated

flow event is broadcast to the connected Clients. The recorded times are shown in table

5.3.

These results are measured from the time a packet is received by the Collector to when

it is broadcast from the Server. As a result, it excludes the transmission time from the

Server to the Client. It was decided not to perform timing tests between the implemented

Server and connected Clients as the duration is heavily dependant on the quality of the

network path between the two components and considered out of scope for the prototype

system as mentioned in section 1.3.

5.3. SYSTEM PERFORMANCE TESTING 82

Table 5.3: Sample recorded results of time taken to process a network flow

Test No. Time Packet Received Time First Record Sent Duration [s]
1 1381000626.1056400 1381000626.1600400 0.0543940
2 1381001156.9537300 1381001157.0111500 0.0574150
3 1381001211.8136500 1381001211.8485900 0.0349381
4 1381001301.8416500 1381001301.8949600 0.0533080
5 1381001356.3536600 1381001356.4073800 0.0537219
6 1381001536.2776300 1381001536.3262600 0.0486290
7 1381001686.5536400 1381001686.6038200 0.0501890
8 1381001771.8176900 1381001771.8710300 0.0533390
9 1381001866.4496300 1381001866.4996200 0.0499859
10 1381001921.6336400 1381001921.6834500 0.0498040

Table 5.4: Recorded results of time taken to parse received packets

Test No. Parse Time Record Count Average Time per record
1 0.001602 5 0.000320
2 0.000115 2 0.000058
3 0.000284 9 0.000032
4 0.000174 6 0.000029
5 0.000178 4 0.000045
6 0.000313 8 0.000039
7 0.000249 9 0.000028
8 0.000335 9 0.000037
9 0.000300 8 0.000038
10 0.000518 9 0.000058

Packet Parse Time

To test the time taken to parse a received packet, the time the packet was removed from

the Raw Packet buffer and the time the parsing of it completed is recorded. The number

or records returned is also recorded. A selection of the recorded results is shown in table

5.4.

As can be seen in table 5.4, the first entry is an order of magnitude out in the average time

taken to compute a single record. The reason for this is because the first packet received

from the collector included template records as well as data records. The recording process

only counted the number of data records returned ad so parse time is not accurately

presented in the first row. Omitting the first row and computing the average time taken

to parse a single record for these results yields a result of 40.2 microseconds. The first

row has been omitted when determining the average as the effect will become insignificant

5.3. SYSTEM PERFORMANCE TESTING 83

Table 5.5: Recorded results of time taken to serialise records

Test No. Serialise Time Record Count Average Time per Record
1 0.000117 4 0.0000293
2 0.000052 1 0.0000520
3 0.000073 3 0.0000243
4 0.000053 2 0.0000265
5 0.000084 3 0.0000280
6 0.000085 3 0.0000283
7 0.000081 2 0.0000405
8 0.000237 4 0.0000593
9 0.000060 2 0.0000300
10 0.000044 1 0.0000440

when using larger sample sets.

Record Serialisation Time

The time taken to serialise a set of records is also recorded. The time before and after the

serialisation of a record set is recorded as is the number of records serialised. From these

results, the average time taken to serialise a single packet is computed. The recorded

result are shown in table 5.5. The average time taken to serialise a single record for

the recorded data shown in table 5.5 is 0.0000362 seconds which is equivalent to 36.2

microseconds.

Geolocation and Record Storage

Once the flow records propagate to the Server component of the system, the time taken

to perform geolocation lookups and record storage is recorded. The testing is done for 20

records and the recorded results are displayed in table 5.6.

The average time taken to perform a single geolocation lookup and a single record storage

are computed to be:

Geolocation lookup average = 0.0001500588 seconds

Record storage average = 0.0251362941 seconds

From these results, the average time required for the individual components is 0.0252

seconds. The remaining 0.0248 seconds are required for passing the serialised records over

5.3. SYSTEM PERFORMANCE TESTING 84

Table 5.6: Times recorded for geolocation lookup and record storage

Test No. Geolocation Time Storage Time
1 0.000036 0.041609
2 0.000069 0.000483
3 0.000036 0.024312
4 0.000084 0.000325
5 0.000276 0.037505
6 0.000106 0.000351
7 0.000071 0.000387
8 0.000063 0.060549
9 0.000090 0.000327
10 0.000269 0.032560
11 0.000212 0.030819
12 0.000235 0.033044
13 0.000203 0.032948
14 0.000230 0.033151
15 0.000186 0.032813
16 0.000177 0.033023
17 0.000208 0.033111

the network from the Collector to the Server. As this time will vary depending on the

network path between the Collector and Server, timing analysis is not performed.

5.3.2 Bandwidth

Traffic statistics are recorded for communication between the Server and a connected

client. The stitics produces show the volume of traffic seen between the two applications

during a request and response to different user requests.

Realtime Traffic

As traffic for realtime is continuous and independent of the user, the traffic statics are

generated for a period of time. The number of flow events exported over this duration

is also recorded. From these two recordings, the average volume of traffic per flow event

is determined. The results of these tests are recorded in table 5.7. From the recorded

statics, the average size of a flow event is calculated to be 204.33 bytes. A host averaging

10 flows a minute would generate a total of 1.4 MB of traffic in 24 hours which is an

insignificant amount of traffic to be passed through an internal network.

5.3. SYSTEM PERFORMANCE TESTING 85

Table 5.7: Recorded statistics of realtime traffic

Test No. Event Count Packet Count Duration [s] Total Bytes Average Event Size [b]
1 394 789 648 80576 204.51
2 1019 2038 595 207769 203.89
3 2857 5714 9760 583940 204.39
4 19 38 70 3886 204.53

Table 5.8: Recorded statistics of heatmap traffic

Test No. Characteristic Packet Count Total Bytes
1 Flow 4 5251
2 Packets 3 5185
3 Bytes 3 5186
4 IP 3 5185
5 Flow 3 5185
6 Packets 3 5185
7 Bytes 3 5186
8 IP 3 5185

Heatmap Traffic

Traffic statics for the heatmap component are constant between requests and the same

volume of data is returned per request and the request id formatted to be a set size.

Traffic generated for different requests is monitored using Wireshark and the resulting

statics are reported in table 5.8.

From the recorded data, the average number of bytes required to respond to a heatmap

request is calculated to be 5193.5 bytes or 5.07 kilobytes. As an individual Client can only

request one heatmap at a time the volume of traffic transferred for a heatmap request

will not scale for an individual Client. The volume of traffic will scale for depending on

the number of Clients should simultaneous requests occur.

Replay Traffic

The replay component of the Client is capable of producing the greatest volume of traffic

per request. Traffic testing for this component is done for different requests. For each

request, traffic statistics of the response from the server are tabulated 5.9 along with the

number of events returned.

Form the recorded traffic, the average number of bytes required to transmit a single record

5.4. SYSTEM DEMONSTRATION 86

Table 5.9: Recorded statistics of replay traffic

No. Record Count Packet Count Total [b] Average Record Size [b]
1 724 11 69794 96.40
2 724 9 69662 96.22
3 724 7 69530 96.04
4 724 7 69530 96.04
5 724 7 69530 96.04
6 724 7 69530 96.04
7 724 11 69794 96.40
8 724 9 69662 96.22
9 724 7 69530 96.04
10 724 7 69530 96.04

from the Server to the Client is calculated to be 96.15 bytes. This implies that transferring

up to 10905 flow events would generate 1 MB of traffic. The number of flow events that

the system will return to a connected Client is dependant on the time range the Client

has selected and the number of flows seen during that time range. The generated traffic

will also scale according to the number of simultaneous requests the server receives.

5.4 System Demonstration

To demonstrate the functionality of the implemented system, a large file was downloaded

using peer to peer file sharing system. The file downloaded was a distribution of the Linux

Mint 15 operating system which is free to download7 which is 959.4 MB in size.

The system was initialised and softflowd was used to monitor the download and generate

the raw network flows. The file downloaded at an average of 18 MiB/s and a system

report was generated. This report can be found in appendix B. After the download had

completed, the system was used to generate a series of heatmaps for the different flow

characteristics.

From the generated maps, the comparison of two characteristics is of particular interest.

7http://www.linuxmint.com/edition.php?id=132.

87

Figure 5.5: Generated heatmap for flows seen

Figure 5.6: Generated heatmap for data transferred

Figure 5.7: Flow event replay of download

5.5. SUMMARY 88

Table 5.10: System processing time

Component Time performed [ms] Time performed [%]
Parsing 0.04 00.0804
Serialisation 0.072 00.1448
Transmission 24.6 49.2021
Geolocation 1.5 00.3001
Storage 25.136 50.2726

The first characteristic is figure 5.5 which is a heatmap where the colouring represents the

number of flows seen to and from a specific country. The second characteristic depicts

byte transfer where the heat indicates the volume of data seen from a specific country.

The byte heatmap is depicted in figure 5.6.

Figure 5.5 indicates the countries to which were connected to during the download. As

expected, the heatmap shows results similar to the replay map shown in Figure 5.7 which

shows the geolocated origins of these flows. Figure 5.6 describes a different result and

shows countries Russia and France outweigh the rest of the world with regards to where the

data was transferred from. This difference is also highlighted by comparing the line graphs

of the generated report in Appendix B. This comparison shows how the system could be

used to show the difference between flow count and flow volume. Similar comparisons can

be done for packet count and the number of different IP addresses connected to in each

country.

5.5 Summary

This chapter describes the testing performed on the implemented system. This testing

begins by confirming the accuracy of the geolocation rendering by by comparing map

renderings generated by Google Maps with the realtime map generated by the system.

Traffic between the Server and a Client application is also recorded to determine the

volume of data and number of packets used by each subcomponent of the Client.

Form the results of the test performance, it is shown that the system geolocation behaves

correctly and accurately plots the test data. Inaccuracies do exist but are due to geoloca-

tion errors in the geolocation database and are not a fault of the prototype system. From

timing results, it is seen that the system is capable of generating flows in a suitable time

with the largest delay arising from database communication.

5.5. SUMMARY 89

Further analysis of the timing results shows the distribution of the time required to

process a NetFlow packet into a geolocated flow event. Theses timings are presented as

percentage values of the total time taken and tabulated in table 5.10. These timings show

that 99.47% of the time taken to parse a single record is required to interface with the

MySQL database and transmit the record from the Collector to the server using the TCP

protocol. The remaining 0.53% is used to parse, serialise, de-serialise, and geolocate the

record. This indicates that, should if become necessary to reduce the time required to

parse a network flow record, efforts should focus on minimising the timing requirements

relating to communication between the two components and interfacing with the record

storage.

The bandwidth tests show that the volume of traffic generated by the implemented system

is not excessive and could be handled but most modern networks. Bandwidth require-

ments will scale according to the number of simultaneously connected Clients as well as

the duration of a replay request. The system is then used to demonstrate some of the

implemented functionality and the visualised results are discussed. A report is also gen-

erated as part of the demonstration which can be found in Appendix B. The next chapter

concludes the results recorded in this chapter and relates these findings to the research

goals stated in chapter 1.

Chapter 6

Conclusion

6.1 Introduction

This chapter begins with a summary of the chapters included in this thesis. This summary

is followed by a conclusion of the results found from performing this research in section

6.3. Section 6.4 restates the research goals and the approach taken to achieve them.

Section 6.5 concludes the research covered and relates the results recorded to the research

goals. This chapter ends with a discussion of future work that could be done to extend

the current system or the develop a new software based network flow export system.

6.2 Summary of Chapters

A description of the problem statement is introduced in section 1.1 which is followed by

a discussion of the research goals. The scope of this research is presented in section 1.3

which specifies and justifies limitations imposed on the research. The chapter concludes

with a document structure that describes the format followed by the remainder of this

document.

Literature relating to an investigation into network flows is presented in chapter 2. The

term network flow is explained in section 2.2 and this includes a discussion of devices

that support the generation of network flows. Protocols NetFlow version 5 and NetFlow

version 9 are reviewed in section 2.3 where the benefits and difficulties of each are com-

pared. Following this, IPFIX is described and compared to NetFlow version 9. A brief

investigation into network flow collectors is done to gain a better understanding of some

90

6.3. CONCLUDING RESULTS 91

of the common approaches taken in collection and processing. This chapter also discusses

security threats such as DDoS, port scanning, and worms. Both the DDoS and worm

discussions include an example system designed to detect the threat using network flows.

The design of the prototype system is covered in chapter 3. The goals of the system are

defined in section 3.2 as well as system constraints in section 3.3. These constraints are

employed to simplify system development by eliminating features that are not required

to achieve the system goals. Hardware and other resource considerations are discussed in

section 3.5 and are focused on bandwidth and memory requirements. The remainder of

the chapter is devoted to the design of the necessary system components and concludes

with a chapter summary.

Chapter 4 continues on from chapter 3 by documenting the implementation of the designed

system. This chapter also justifies the use of Python and JavaScript as the languages

used for implementation in section 4.2. This section also covers the libraries used as part

of the system implementation. Once the implementation of each component has been

documented, the chapter concludes with a summary of the material covered.

Testing of the implemented system is the focus of chapter 5 and is split into three parts.

The first part is conformance testing of the geolocation component the system. The test

was carried out by preforming geolocation on known IP addresses and comparing the

recorded results with images rendered by the system for the same test data. System per-

formance tests were then done to determine the time required for the system to process

an exported flow into a geolocated flow event. The final testing component was performed

to demonstrate the functionality of the implemented system by running it in a live envi-

ronment. The system recorded flow events associated with a torrent download. From the

recorded results, two heatmaps are generated and compared. A report of the event can

be found in appendix B.

6.3 Concluding results

This research was performed to explore the use network flows in traffic visualisation

and geolocation to aid in cyber defence. Two goals are defined in chapter 1 which this

research attempts to achieve. The first goal is to attempt the development of a prototype

system capable of geolocation and traffic visualisation. The second goal is an investigation

into using network flows and geolocation to produce a real time map rendering of flow

endpoints.

6.3. CONCLUDING RESULTS 92

6.3.1 Prototype System

It is shown through conformance testing in section 5.2 that the geolocation provided

by the implemented system is suitable for geolocating network flows on a global scale.

Comparisons between the coordinates produced using the online GeoIP2 Precision Demo

and the coordinates stored in the system database show that the geolocation and storage

components function correctly. The flow events rendered using these coordinates match

tags produced using Google Maps.

Inaccuracies do however exist in the geolocation databases which are discussed in section

5.2.3. This error is due to inaccuracies in the geolocation database rather thatn a fault

of the implemented system. This issue could be rectified by using a more accurate geolo-

cation database but for the current implementation, the database used is still considered

acceptable.

Bandwidth results generated for server responses showed that traffic generated by the

system is mostly dependant on the number of connected Clients. For traffic replay events,

the range specified to be replayed and the number of flows recorded during that period

also effects the volume of traffic generated. As a result, the traffic generated by the system

will not be excessive if the number of connected clients is limited.

By using the implemented system in a live environment it is shown that the results ren-

dered by using the visualisation components are useful in analysing an event. Comparing

the heatmap in figure 5.5 with the heatmap depicted in figure 5.6 is is shown that there

is no immediate relationship between the number of flows seen and the volume of traffic

transferred from a specific country for a torrent. This result is expected and the goal

of the demonstration is to show how the heatmaps can be used to visualise different

characteristics by using network flows.

6.3.2 Real-time Geolocation

System timings reveal that the time taken by the system to render a received flow event is

approximately 50 milliseconds. This testing was done on specific hardware so results my

vary depending on the platform. The total timing arising from network communication

will increase if the system is hosted across multiple platforms and if the Client is situated

a considerable distance from the Server. Considering this, timings of communication

between the Client and Server have not been tested.

6.4. RESEARCH REVIEW 93

In section 2.3.3, timings relating to when a network flow export system will announce the

expiration of a network flow are discussed. This will only occur when the network flow

expires as the default configuration of most devices is to only exporter expired flows. An

alternative is to configure the system to periodically broadcast the state of all monitored

flows which allows the geolocation system to specify a maximum latency between when a

flow begins and when it is exported to the collector. The consequence of using a periodic

broadcast is the volume of traffic generated and the additional processing overhead the

collector will require as discussed in section 2.3.3. As these configuration options do not

form part of the NetFlow protocol specifications so timings regarding network flow export

in non Cisco systems do not need to conform to these configurations.

Should the exportation of network flows be performed with suitable latency, constructing

a real-time geolocation system similar to the prototype system developed as part of this

research is feasible. A consequence is that the designed system will be dependent of the

configurable options of the system responsible for generating and exporting the network

flows.

6.4 Research Review

This research had two goals that it attempted to achieve which were:

� An exploration into the use of network flows for traffic visualisation to aid in ad-

ministration and network security.

� The use of network flows for realtime geolocation and coordinate rendering.

The approach taken in this research was to design and implement a prototype system

capable actually performing traffic visualisation and geolocation. The system could then

be used to explore the timing concerns that could hinder the development of a realtime

geolocation system using network flows. The prototype system could also be used to

visualise the recorded network flows for different characteristics and to produce a report

displaying statistics of the recorded traffic.

6.5. CLOSING STATEMENT 94

6.5 Closing Statement

Considering the results collected from testing the prototype system and functionality

shown during the system demonstration, it can be concluded that network flows are a

feasible source of data for traffic visualisation and geolocation. Treating the exported

characteristics associated with each flow as packet summaries, analysis using network

flows allows the user to quickly acquire a good overview of the condition of the associated

network. A drawback to this approach is the loss of resolution and so the user will be

unable to evaluate packet contents if using network flows.

One use of network flows found in this research is for the geolocation of end hosts that

communicate through the monitored network. By using flows, geolocation systems can

have the source or destination host of a flow exported as a characteristic. The advantage

of this is the reduced amount of data needed to be monitored for new IP addresses to

geolocate. In traditional systems, this is done by evaluating the header of every sampled

packet to determine id a new host address has been seen. Using network flows, the

monitoring needs only be done once for each network flow when it is first announced by

the exporting system.

Two concerns were raised during this research regarding the feasibility of using network

flows for geolocation. The first concern relates to the timing and latency of using network

flows and is discussed in section 2.3.3. It is concluded that, with proper configuration of

the exporter, a maximum latency can be established that is short enough to be suitable

without causing the exporter to generate excessive traffic volumes. The second concern

relates to the accuracy of the geolocated results. It was concluded that this is not the

a consequence of using network flows but an inaccuracy in the implemented geolocation

database. As a result, this concern is valid for geolocation systems regardless of whether

network flows or packets are used as the traffic source data.

6.6 Future Work

� As specified in the system constraints in section 3.3, the current implementation does

not attempt to support IPv6. The reason for this is IPv4 addresses are suitable to

explore the use of network flows for geolocation and data visualisation. Should the

system later be required to monitor and geolocate IPv6 addresses, then the system

should be extended to do so.

6.7. DEVELOPMENT OF A SUITABLE FLOW EXPORT SYSTEM 95

� The protocol the implemented system accepts is NetFlow version 9. The reasons for

this decision is discussed in section 3.2, one of which was the similarities between

NetFlow version and IPFIX. As a result, an extension of the current system could be

to allow the system to accept and process raw network flows being exported under

the IPFIX protocol.

� The reporting tools in the current implementation have been designed as a proof of

concept and to show the type of information that the system can report on. This

section can be improved to include more thorough reporting tools, especially if the

system is extended to accept a larger set of characteristics. The reporting function-

ality should also be tailored to suit the field that the system will be implemented

in.

6.7 Development of a Suitable Flow Export System

Throughout the development and testing of the implemented system, the source of net-

work flows has been Softflowd. As discussed in chapter 3, this is a software based appli-

cation capable of generating and exporting raw network flows. Softflowd uses the UDP

protocol for packet transmission which incurs risks as dependent systems require that ex-

ported packets are guaranteed to arrive, especially packets containing template records.

Another issue with using Softflowd is that the exported characteristics are defined in the

source code and cannot be specified by the connected system or the user at run time1.

Future work in developing a suitable software based flow export system should be consid-

ered. Such a system could be based of softflowd or extend it to make it more suitable for

systems reliant on a range of characteristics and flow durations. Features the implemented

to the extended system should include:

� Develop the system to be platform independent.

� Allow records to be exported using the IPFIX protocol.

� Allow the user to specify the underlying protocols that the application should use

to export the flows.

� Functionality to allow the user to specify the characteristics exported when using

the NetFlow version 9 or IPFIX protocol.

1http://code.google.com/p/softflowd/source/checkout

6.7. DEVELOPMENT OF A SUITABLE FLOW EXPORT SYSTEM 96

� Proper handeling of timing configurations to mimic a NetFlow compatible router or

switch developed by Cisco as discussed in section 2.3.3.

� Complete documentation of system functionality.

References

Barracuda. 2013. How to Configure Audit & Reporting With IPFIX. TechLibrary.

Available from: http://techlib.barracuda.com/pages/viewpage.action?pageId=

6979841. Accessed on 27 October 2013.

Braden, & IETF. 1989 (October). Requirements for Internet Hosts – Communication

Layers. RFC 1122. Internet Engineering Task Force (IETF).

Case, Fedor, Schoffstall, & Davin. 1990. A Simple Network Management Protocol

(SNMP). RFC 1098. Network Working Group.

Cisco. 2006. NetFlow Export Datagram Format. Online. Available from:

http://www.cisco.com/en/US/docs/net_mgmt/NetFlow_collection_engine/

3.6/user/guide/format.html. Accessed on 12 May 2013.

Cisco. 2011a. Cisco IOS NetFlow Version 9 Flow-Record Format. Online. Available

from: http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_

white_paper09186a00800a3db9.pdf. Accessed on 16 May 2013.

Cisco. 2011b. Configuring NetFlow and NetFlow Data Export. Online. Available

from: http://www.cisco.com/en/US/docs/ios-xml/ios/NetFlow/configuration/

12-4/cfg-nflow-data-expt.html. Accessed on 14 May 2013.

Cisco. 2012a (Jan). Catalyst 6500/6000 Switches NetFlow Configuration and Trou-

bleshooting. Cisco. Document ID: 70974.

Cisco. 2012b. NetFlow Reliable Export With SCTP. Online. Available

from: http://www.cisco.com/en/US/docs/ios-xml/ios/NetFlow/configuration/

12-4t/nf-12-4t-book.pdf. Accessed on 14 May 2013.

Cisco. 2012c. NetFlow Services Solutions Guide . Online. Available from: http://www.

cisco.com/en/US/docs/ios/solutions_docs/NetFlow/nfwhite.html. White Paper

Accessed on 23 October 2013.

97

REFERENCES 98

Claise, Systems, Cisco, Trammell, & Zurich. 2013 (Feb). Specification of the IP Flow

Information eXport (IPFIX) Protocol for the Exchange of Flow Information. RFC.

Claise, B. 2008 (Jan). Specification of the IP Flow Information Export (IPFIX) Protocol

for the Exchange of IP Traffic Flow Information. RFC 5101. Internet Engineering Task

Force(IETF).

Claise, B., & Systems, Cisco. 2006 (October). Cisco Systems NetFlow Services Export

Version 9. RFC 3954. Network Working Group.

Cliquet, Gerard. 2006. Geomarketing. Methods and Strategies in Spatial Thinking. Vol.

1. ISTE Ltd.

Ennis, Jennifer. 2013. pygeoip 0.2.7. Online. Available from: https://pypi.python.

org/pypi/pygeoip/. Accessed on 11 October 2013.

Erickson, Jon. 2008. Hacking: The art of exploitation. Second edition edn. No Starch Pr.

Estan, Keys, Moore, & Varghese. 2004. Building a Better NetFlow. SIGCOMM,

1(September), 245 – 257.

Facebook. 2013. Tornado. Online. Available from: http://www.tornadoweb.org/en/

stable/. Accessed on 5 October 2013.

FriendFeed. 2013. FriendFeed API. Online. Available from: http://friendfeed.com/

api/. Accessed on 4 August 2013.

Fullmer, Mark. flow-capture. Man page. Available from: http://www.splintered.net/

sw/flow-tools/docs/flow-capture.html. Accessed on 14 May 2013.

Fullmer, Mark. flow-tools. Online. Available from: http://www.splintered.net/sw/

flow-tools/docs/flow-tools.html. Accessed on 15 Jun 2013.

Gldi, Christoph, & Hiestand, Roman. 2005 (April). Scan Detection Based Identification

of Worm-Infected Hosts. Ph.D. thesis, Institut fr Technische Informatik und Kommu-

nikationsnetze.

Juniper Networks, Inc. 2013. Junos OS Routing Protocols Overview.

Online. Available from: http://www.juniper.net/techpubs/en_US/

junos13.1/information-products/pathway-pages/config-guide-routing/

config-guide-routing-overview.pdf. Accessed on 21 May 2013.

REFERENCES 99

Kerr, & Bruins. 1996. Network flow switching and flow data export. Online. Available

from: http://www.google.com/patents/US6243667. Patent.

Klinggaard, Bjrn. jQuery.bPopup.js. Online. Available from: http://dinbror.dk/

bpopup/. Accessed on 12 August 2013.

Klyne, Graham, & Newman, Chris. 2002. Date and time on the internet: Timestamps.

Technical report. IETF. RFC. 3339.

Lakkaraju, Kiran, Yurcik, William, & Lee, Adam J. 2004. PNVisionIP: NetFlow visual-

izations of system state for security situational awareness. Pages 65–72 of: Proceedings

of the 2004 ACM workshop on Visualization and data mining for computer security.

ACM.

Lee, Changyong, Kim, Hwankuk, Jeong, Hyuncheol, & Won, Yoojae. 2010 (June). Anal-

ysis of SIP Traffic Behavior with NetFlow - based Statistical Information.

Lellelid, Jim Winstead; Hans. 2013. Net GeoIP. Online. Available from: http://pear.

php.net/manual/en/package.networking.net-geoip.php. Accessed on 14 October

2013.

MacVittie, Lori. 2012. Geolocation and Application Delivery. Online. Available from:

http://www.f5.com/pdf/white-papers/geolocation-wp.pdf. Accessed on 14 May

2013.

MaxMind. MaxMind. Online. Available from: http://www.maxmind.com/en/home. Ac-

cessed on 12 May 2013.

MaxMind. 2013. GeoIP2 Precision Demo. Online. Available from: http://www.maxmind.

com/en/geoip_demo. Accessed on 22 October 2013.

Maxmind. 2013. PGeoLite Free Downloadable Databases. Online. Available from: http:

//dev.maxmind.com/geoip/legacy/geolite/. Accessed on 14 June 2013.

Messer, James. 2007. Secrets of Network Cartography. A Comprehensive Guide to Nmap.

Second edition, revision 2 edn. Professor Messer Publication.

mhaske Dhamdhere, Vidya, & Patil, Prof. G.A. 2012. NetFlow method used for internet

worm detetion. International Journal of Scientific & Engineering Research, 3(March),

1–7.

Miller, Damien. 2010. Readme file of flowd. Online. Available from: http://code.

google.com/p/flowd/wiki/README. Accessed on 14 May 2013.

REFERENCES 100

Miller, Damien J. 2011. Softflowd. Online. Available from: http://www.mindrot.org/

projects/softflowd/. Accessed on 14 June 2013.

Mills, D., Delaware, U., J. Martin, Ed., ISC, & Burbank, J. 2010 (June). Network Time

Protocol Version 4: Protocol and Algorithms Specification. RFC 5905. Internet Engi-

neering Task Force (IETF).

Mirkovic, Jelena, & Reiher, Peter. 2004. A taxonomy of DDoS attack and DDoS defense

mechanisms. SIGCOMM Comput. Commun. Rev., 34(2), 39–53.

Morken, Jan Tore. 2010 (June). Distributed NetFlow Processing Using the Map-Reduce

Model. Computer and Information Science, Norwegian University of Science and Tech-

nology.

NCC, RIPE. 2011. The Internet Registry System. Online. Available

from: http://www.ripe.net/internet-coordination/internet-governance/

internet-technical-community/the-rir-system. Accessed on 14 June 2013.

nTop. 2010. nBox, nProbe, n2disk Users Guide. Online. Available from: http://www.

nmon.net/UsersGuide.pdf. Accessed on 23 May 2013.

nTop. 2013. nProbe: An Extensible NetFlow v5 v9 IPFIX. Online. Available from:

http://www.ntop.org/products/nprobe/. Accessed on 16 October 2013.

Proctor, Paul E. 2001. The Practical Intrusion Detection Handbook. Vol. 1. Prentice Hall

PTR.

Project, The Honeynet. Honeymap. Online. Available from: http://map.honeynet.

org/. Accessed on 15 May 2013.

Quittek, Jürgen, Aitken, Paul, Meyer, Jeff, Claise, Benoit, & Bryant, Stewart. 2008.

Information model for ip flow information export. Technical report. IETF.

Rekhter, Y., Li, T., & Hares, S. 2006 (Jan). A Border Gateway Protocol 4 (BGP-4). RFC

4217. Internet Engineering Task Force (IETF).

ReportLab. 2013 (May). ReportLab PDF Library User Guide. Users Guide 2.7. ReportLab,

ReportLab PDF Library User Guide ReportLab Version 2.7 Document generated on

2013/05/07 20:18:53 Thornton House Thornton Road Wimbledon London SW19 4NG,

UK.

Scheck, Michael, & CSIRT, Cisco. 2009. NetFlow for Incident Detection. Online. Available

from: www.first.org/global/practices/NetFlow.pdf. Accessed on 27 August 2013.

REFERENCES 101

Staniford, Stuart, Paxson, Vern, & Weaver, Nicholas (eds). 2002 (Aug). How to 0wn

the Internet in Your Spare Time. USENIX Security Symposium, vol. 11. USENIX

Association, San Francisco, California, USA.

Systems, Cisco. 2004. Catalyst 4500 Series Switch Cisco IOS Software Configuration

Guide. 12.2 edn. Cisco, Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA

95134-1706 USA.

Trammell, Boschi, Mark, Zseby, & Wagner. 2009 (Oct). Specification of the IP Flow

Information Export (IPFIX) File Format. RFC 5655. Internet Engineering Task Force

(IETF).

van Riel, Jean-Pierre, & Irwin, Barry. 2006. InetVis, a visual tool for network telescope

traffic analysis. Pages 85–89 of: Proceedings of the 4th international conference on

Computer graphics, virtual reality, visualisation and interaction in Africa. ACM.

Watson, David, Clune, Arthur, Riden, Jamie, & Mumford, Steve. 2013. The Honeynet

Project. Online. Available from: http://www.honeynet.org/. Accessed on 15 October

2013.

Yang, Guang. 1997 (Nov). Introduction to TCP/IP Network Attacks. M.Phil. thesis,

Iowa State University, Department of Computer Science Iowa State University Ames,

IA 50011.

Zou, Cliff, Towsley, Don, & Gong, Weibo. 2006. On the performance of Internet worm

scanning strategies. Performance Evaluation, 63(7), 700–723.

Zseby, Tanja, Quittek, Juergen, Claise, Benoit, & Zander, Sebastian. 2004. Requirements

for IP Flow Information Export (IPFIX). Technical report. Internet Engineering Task

Force(IETF).

Appendix A

Exportable Characteristics

The following table lists all characteristics currently exportable using the NetFlow version

9 protocol (Cisco, 2011a). Selected characteristics have been discussed in chapter 2.

Value Field Type Length (bytes)

1 IN BYTES N (default is 4)

2 IN PKTS N (default is 4)

3 FLOWS N

4 PROTOCOL 1

5 SRC TOS 1

6 TCP FLAGS 1

7 L4 SRC PORT 2

8 IPV4 SRC ADDR 4

9 SRC MASK 1

10 INPUT SNMP N

11 L4 DST PORT 2

12 IPV4 DST ADDR 4

13 DST MASK 1

14 OUTPUT SNMP N

15 IPV4 NEXT HOP 4

16 SRC AS N (default is 2)

17 DST AS N (default is 2)

18 BGP IPV4 NEXT HOP 4

102

103

19 MUL DST PKTS N (default is 4)

20 MUL DST BYTES N (default is 4)

21 LAST SWITCHED 4

22 FIRST SWITCHED 4

23 OUT BYTES N (default is 4)

24 OUT PKTS N (default is 4)

25 MIN PKT LNGTH 2

26 MAX PKT LNGTH 2

27 IPV6 SRC ADDR 16

28 IPV6 DST ADDR 16

29 IPV6 SRC MASK 1

30 IPV6 DST MASK 1

31 IPV6 FLOW LABEL 3

32 ICMP TYPE 2

33 MUL IGMP TYPE 1

34 SAMPLING INTERVAL 4

35 SAMPLING ALGORITHM 1

36 FLOW ACTIVE TIMEOUT 2

37 FLOW INACTIVE TIMEOUT 2

38 ENGINE TYPE 1

39 ENGINE ID 1

40 TOTAL BYTES EXP N (default is 4)

41 TOTAL PKTS EXP N (default is 4)

42 TOTAL FLOWS EXP N (default is 4)

43 *Vendor Proprietary*

44 IPV4 SRC PREFIX 4

45 IPV4 DST PREFIX 4

46 MPLS TOP LABEL TYPE 1

47 MPLS TOP LABEL IP ADDR 4

48 FLOW SAMPLER ID 1

49 FLOW SAMPLER MODE 1

50 FLOW SAMPLER RANDOM INTERVAL 4

51 *Vendor Proprietary*

52 MIN TTL 1

53 MAX TTL 1

54 IPV4 IDENT 2

55 DST TOS 1

56 IN SRC MAC 6

104

57 OUT DST MAC 6
58 SRC VLAN 2
59 DST VLAN 2
60 IP PROTOCOL VERSION 1
61 DIRECTION 1
62 IPV6 NEXT HOP 16
63 BPG IPV6 NEXT HOP 16
64 IPV6 OPTION HEADERS 4
65 *Vendor Proprietary*
66 *Vendor Proprietary*
67 *Vendor Proprietary*
68 *Vendor Proprietary*
69 *Vendor Proprietary*
70 MPLS LABEL 1 3
71 MPLS LABEL 2 3
72 MPLS LABEL 3 3
73 MPLS LABEL 4 3
74 MPLS LABEL 5 3
75 MPLS LABEL 6 3
76 MPLS LABEL 7 3
77 MPLS LABEL 8 3
78 MPLS LABEL 9 3
79 MPLS LABEL 10 3
80 IN DST MAC 6
81 OUT SRC MAC 6
82 IF NAME N
83 IF DESC N
84 SAMPLER NAME N
85 IN PERMANENT BYTES N (default is 4)
86 IN PERMANENT PKTS N (default is 4)
87 * Vendor Proprietary*
88 FRAGMENT OFFSET 2
89 FORWARDING STATUS 1
90 MPLS PAL RD 8 (array)
91 MPLS PREFIX LEN 1
92 SRC TRAFFIC INDEX 4
93 DST TRAFFIC INDEX 4
94 APPLICATION DESCRIPTION N
95 APPLICATION TAG 1+n
96 APPLICATION NAME N
98 postipDiffServCodePoint 1
99 replication factor 4
100 DEPRECATED N
102 layer2packetSectionOffset
103 layer2packetSectionSize
104 layer2packetSectionData

105 to 127 UNUSED

Appendix B

Sample system report

Below is a report generated by the implemented system. The report was generated from

the flows processed during the file download which is discussed in section 5.4

105

106

Appendix C

Sample Heatmaps

Below are heatmaps generated by the prototype system for a singe sample data set. The

sample data set was generated by performing a large download of the Linux distribution

CrunchBang 11 ”Waldorf”1. This file was downloaded using peer to peer file sharing.

Figure C.1: Heatmap of total bytes transferred

1http://crunchbang.org/download/

107

108

Figure C.2: Heatmap of flows recorded

Figure C.3: Heatmap of unique hosts connected to

Figure C.4: Heatmap of packets transferred

